Data Structures

CSCI C343, Fall 2015

This quiz has 3 questions, for a total of 30 points.

1. 9 points Suppose that L is a Python list (array) of length n. Categorize the worst-case execution time of the below expressions as either
2. $O(1)$
3. $O(\lg n)$
4. $O(n)$
5. $O\left(n^{2}\right)$

Label each operation with the above item number.

- L.insert(1, 42)
- L[n-1]
- 1 in L

Solution:

- (3), L.insert(1, 42) is $O(n)$, (3 points)
- (1), $\mathrm{L}[\mathrm{n}-1]$ is $O(1),(3$ points)
- (3), 1 in L is $O(n)$, (3 points)

2. 11 points Let $f(n)=5 n+10$ and $g(n)=n^{2}$. Give the definition of Big-O and prove that $f(n) \in O(g(n))$.

Solution: Definition of $O(g(n))$: (3 points)

$$
O(g(n))=\left\{f(n) \mid \exists n_{0} \cdot \forall n \geq n_{0} \cdot \exists c .0 \leq f(n) \leq c g(n)\right\}
$$

We need to choose a c such that $c n^{2}$ becomes greater than $5 n+10$ at some point. We choose $c=1$ (3 points, there other valid choices) because n^{2} is going to dominate $5 n$ regardless of the choice of c, and $c=1$ is the easiest choice. Next we need to find out at what point n^{2} is equal to or bigger than $5 n+10$, so we chart those out:

n	$5 n+10$	n^{2}
4	30	16
5	35	25
6	40	36
7	45	49

So it looks like $n_{0}=7$ is a good choice (3 points, there other valid choices). We are now ready to give the proof.
To show that $5 n+10 \in O\left(n^{2}\right)$, we need to show that

$$
\exists n_{0} . \forall n \geq n_{0} \cdot \exists c \cdot 0 \leq 5 n+10 \leq c n^{2}
$$

We choose $n_{0}=7$ and $c=1$. So we need to prove that

$$
\forall n \geq 7.0 \leq 5 n+10 \leq n^{2}
$$

(2 points for a good argument for why this is true.)
We proceed by induction on n. As a base case, for $n=7$ we have

$$
0 \leq 45 \leq 49
$$

Suppose $0 \leq 5 n+10 \leq n^{2}$ (the induction hypothesis). We need to show that it is also true for $n+1$. That is, we need to show

$$
0 \leq 5(n+1)+10 \leq(n+1)^{2}
$$

Simplifying this, we need to show

$$
0 \leq 5 n+15 \leq n^{2}+2 n+1
$$

Using the induction hypothesis, we can reduce this to

$$
0 \leq 10 \leq 2 n+1
$$

We know $n>7$, so the right-hand side is larger than 15 and the proof is complete.
3. 10 points What is the output of the following Python program?

```
A = [1,2]
    B = A
    A[0] = 3
    B[1] = 4
    print(B)
    C = []
    C. append ((3,4))
    print(C)
    D = {(0,0): 'green', (0,1): 'blue', (1,0): 'red'}
    print(D[(0,1)])
    print((1,1) in D)
    D[(1,0)] = 'purple'
    print(D[(1,0)])
```

Solution: 2 points per line of correct output
$[3,4]$
$[(3,4)]$
blue
False
purple

