This quiz has 3 questions, for a total of 30 points.

1. 10 points What is the output of the following Python program?

```
A = [1,2]
A.append((3,4))
print(A)
print(1 in A)
print(4 in A)
B = A
C = A + B
A[1] = A[0]
print(B)
print(C)
```

```
Solution: 2 points per line of correct output

[1, 2, (3, 4)]
True
False
[1, 1, (3, 4)]
[1, 2, (3, 4), 1, 2, (3, 4)]
```

- 2. 9 points Suppose that L is a Python list (array) of length n. Categorize the worst-case execution time of the below expressions as either
 - 1. O(1)
 - 2. $O(\lg n)$
 - 3. O(n)
 - 4. $O(n^2)$

Label each operation with the above item number.

- 1000 in L
- L.remove(0)
- len(L)

Solution:

- (3), 1000 in L is O(n), (3 points)
- (3), L.remove(0) is O(n), (3 points)
- (1), len(L) is O(1), (3 points)

Name: _____

3. 11 points Let $f(n) = n^2 + n + 10$ and $g(n) = n^2$. Give the definition of Big-O and prove that $f(n) \in O(g(n))$.

Solution: Definition of O(g(n)): (3 points)

$$O(g(n)) = \{ f(n) \mid \exists n_0 . \forall n \ge n_0 . \exists c. \ 0 \le f(n) \le c g(n) \}$$

We need to choose a c such that cn^2 becomes greater than $n^2 + n + 10$ at some point. Ignore the +10 for the moment. For $n \ge 1$, we have $n^2 \ge n$, so

$$n^2 + n \le n^2 + n^2 = 2n^2$$

So we choose c = 2 (3 points, there other valid choices). Next we need to find out at what point $2n^2$ is equal to or bigger than $n^2 + n + 10$, so we chart those out:

n	$n^2 + n + 10$	$2n^2$
0	10	0
1	12	2
2	16	8
3	22	18
4	30	32

So it looks like $n_0 = 4$ is a good choice (3 points, there other valid choices). We are now ready to give the proof.

To show that $n^2 + n + 10 \in O(n^2)$, we need to show that

$$\exists n_0. \forall n \ge n_0. \exists c. \ 0 \le n^2 + n + 10 \le c \, n^2$$

We choose $n_0 = 4$ and c = 2. So we need to prove that

$$\forall n \ge 4. \ 0 \le n^2 + n + 10 \le 2n^2$$

(2 points for a good argument for why this is true.)

We proceed by induction on n. As a base case, for n=4 we have

$$0 \le 30 \le 32$$

Suppose $0 \le n^2 + n + 10 \le 2n^2$ (the induction hypothesis). We need to show that it is also true for n + 1. That is, we need to show

$$0 \le (n+1)^2 + (n+1) + 10 \le 2(n+1)^2$$

Simplifying this, we need to show

$$0 \le n^2 + 3n + 12 \le 2n^2 + 4n + 2$$

Subtracting from both sides yields

$$0 \le 10 \le n^2 + n$$

which is true for n > 4.