(C343 Project 7 - Routing Wires on a Chip

Due 11:59pm, December 4, 2015

1 Project Description

In this project you will implement a Python program that places wires on a computer chip.
For purposes of this project, a computer chip will be abstractly represented as a grid of
vertices, where each vertex is connected to the four neighboring vertices (in the directions
north, south, east, and west). To complicate matters, parts of the chip are already allocated
for other uses and may not be used for running wires. These already-in-use parts are called
obstacles. Each obstacle is a rectangular region of the grid. You will be given a list of pairs
of coordinates and your task is to connect each pair with a wire. A coordinate is a pair of
integers, with the first being the horizontal distance from the left edge of the grid, and the
second being the vertical distance from the top edge of the grid. A wire is a list of grid
points. Wires may not cross one another. In addition to connecting all the pairs, your goal
is to minimize the aggregate lengths of all the wires and to minimize the execution time of
your program.

The format of the input file is described as follows. The first line is the height of the grid,
given as an integer. The second line is the width of the grid, also given as an integer. The
third line is the number of obstacles 0. The next o lines are the obstacles. Each line has four
integers, separated by spaces. The first two integers give the upper left coordinate of the
obstacle and the second two integers give the lower right coordinate of the obstacle. After
the obstacles, there is a line that gives the number of pairs that need to be connected. The
remaining lines in the file are pairs of space-separated coordinates, where each coordinate is
a pair of space-separated integers.

We have given you the code that reads the input file and creates the grid with obstacles
laid out and the source and destination points specified. The obstacles are marked with grid
cells with value —1. The start and end points of a wire/path are marked with a number
assigned to that path. All the other cells contain the value 0.

Your function find_paths(grid, points) should use this grid to connect a source and a
destination with a path. You should mark the grid once a path has been found for a pair
of points, thus preventing overlapping of paths. Also all the points that lie on an obstacle
should be avoided. The check_correctness function checks for these conditions to verify the
correctness of your solution.

Note that a path can have the same source and destination points.

2 Your Task

We need you to implement the following method:

1. find_paths(grid, points) - Takes the grid and the points as arguments and returns a
list of paths. The grid represents the entire chip. Each path represents the wire used
to connect components represented by points. Each path connects a pair of points in
the points array; avoiding obstacles and other paths while minimizing the total path
length required to connect all points. If the points cannot be connected the function
returns None.

Think of a simple way to minimize the path length. You can use the grid to mark the
points that lie on a path. You might want to use auxiliary data structures to keep track of
the intermediate points that lie on the path.

After finding a correct solution, you can look for heuristics to reduce the aggregate length
further.

3 Running Your Code

e To run, execute python routing.py chipfile where chipfile is any of the .in files
provided. The script will run your find_paths function and print out all the paths and
the aggregate length. If your solution is unable to connect paths, the script will print
Cannot connect all the points!.

e To test, check the total length printed and see if you can minimize it further with some
heuristics.

4 Deliverables

Your repository should contain all the files from the zip. We will be looking at the following
while grading your assignment:

e routing.py - containing your solution
e Describe your solution in README . md.

e Hours - record the number of hours you spent on writing and debuging your code. Put
your answers in the README.md.

5 Testing

There are no standard test cases provided for this assignment, because a correct solution
might not be optimal. Although, we will be looking for optimized solutions. We also encour-
age you to write your own unit tests. A good way to do this is to use assert statements. So
if your function must return True for given inputs, the test case looks like

assert f(i) == True

You can then put all your tests inside an if statement.

if name__ == "__main__":

my unit tests

The tests will be executed when you execute this python script but not when you include
this file into another script and run that.

