Sound Off-policy TD learning

Off-policy, policy evaluation with linear FA

Conventional on-policy TD(0) with linear function approximation:

$$\theta_{t+1} \leftarrow \theta_t + \alpha [R_{t+1} + \gamma \theta_t^\top \phi_{t+1} - \theta_t^\top \phi_t] \phi_t$$

Conventional on-policy TD(0) with linear function approximation—ordinary importance sampling:

$$\begin{aligned} \theta_{t+1} \leftarrow \theta_t + \rho_t \alpha [R_{t+1} + \gamma \theta_t^\top \phi_{t+1} - \theta_t^\top \phi_t] \phi_t \\ \rho_t \stackrel{\text{\tiny def}}{=} \frac{\pi (A_t | S_t)}{\mu (A_t | S_t)} \qquad \phi_t \stackrel{\text{\tiny def}}{=} \phi(S_t) \end{aligned}$$

Instability of Bootstrapping methods

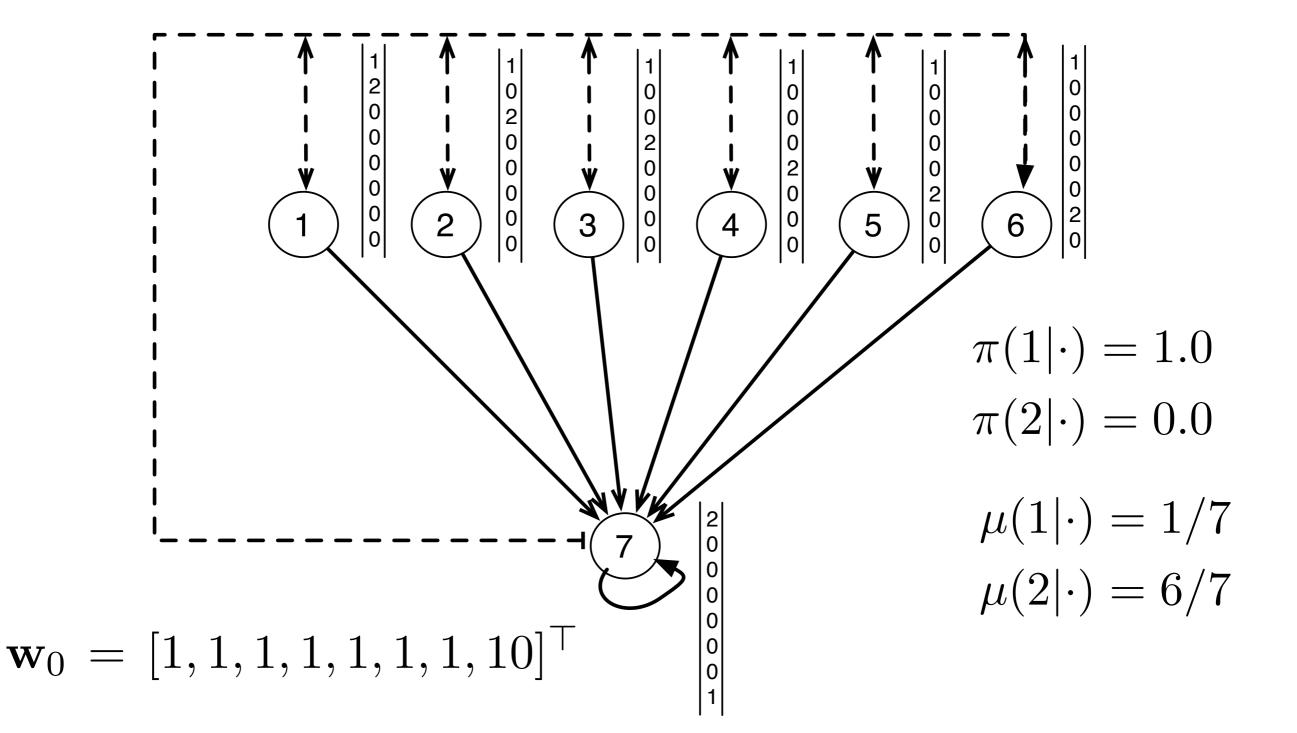
□ If we combine:

- * bootstrapping + function approximation (even linear) + off-policy learning
- * bootstrapping + non-linear function approximation—like a neural network
- This means that TD(λ), Expected Sarsa, and Qlearning are all not sound
 - ***** we cannot prove convergence in general settings
 - ***** we can demonstrate divergence empirically with counterexamples

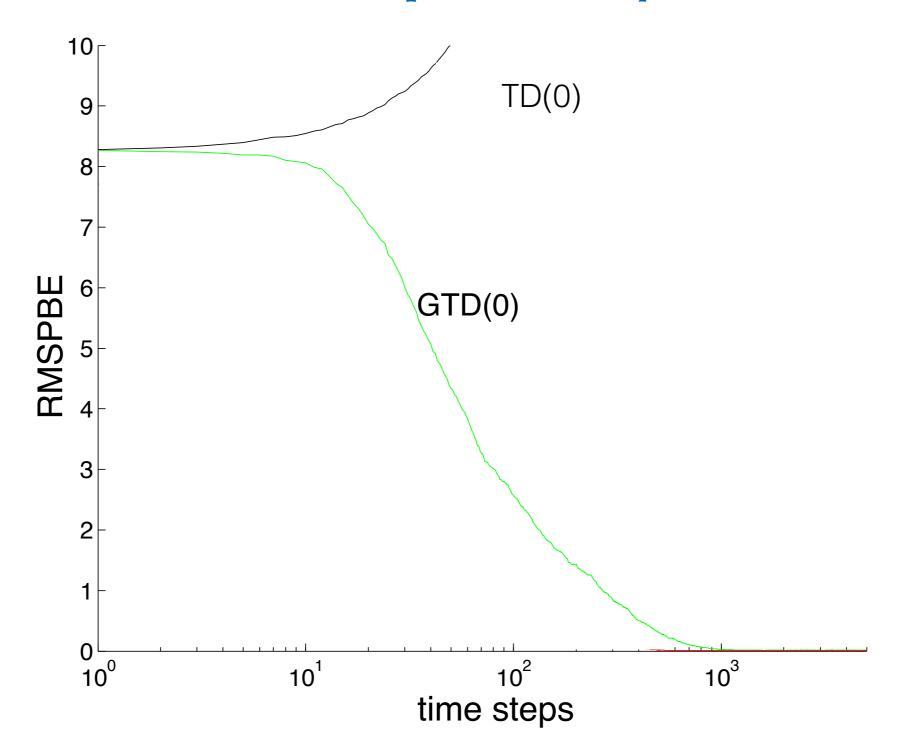
Baird's famous counterexample

- □ Target policy always takes action one in every state
- Behavior policy most of the time (6/7) takes action two in every state
- Large importance sampling corrections
- Initial weight vector is high-magnitude
- □ All states share one feature component
- □ Rewards are all zero
- Zero error solution is possible, can perfectly represent the value function

Baird's famous counterexample



Linear off-policy TD(0)



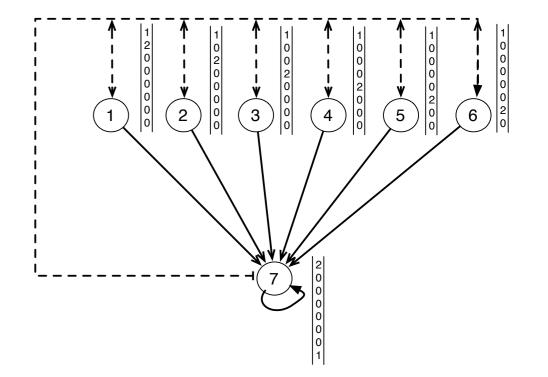
What is going on?

\Box Consider the first trans. 6 \rightarrow 7

- ***** weight vector still = initialization
- ***** $\delta = 0 + .99(12) 3 = 8.88$
- *** w** = [7.2, 1, 1, 1, 1, 1, 13.4, 10]
- \Box Consider the first trans. 1 \rightarrow 7
 - * $\delta = 14.9717$
 - *** w** = [17.7, 22, 1, 1, 1, 1, 1, 3.4, 10]
- \square Consider the first trans. 6 \rightarrow 7
 - * $\delta = 0 + .99(45.4) 44.5602 = 0.378$
 - ***** w = [17.96, 22.0, 1, 1, 1, 1, 14, 10]

□ w(10) is causes problems here, but only 7 → 7 can cause w(10) to reduce

★ e.g., 7 → 7 changes w(10) from 10 to 9.6785



 $\pi(1|\cdot) = 1.0 \quad \mu(1|\cdot) = 1/7$ $\pi(2|\cdot) = 0.0 \quad \mu(2|\cdot) = 6/7$

$$\mathbf{w}_0 = [1, 1, 1, 1, 1, 1, 1, 1]^{\top}$$

Fixing TD with off-policy sampling

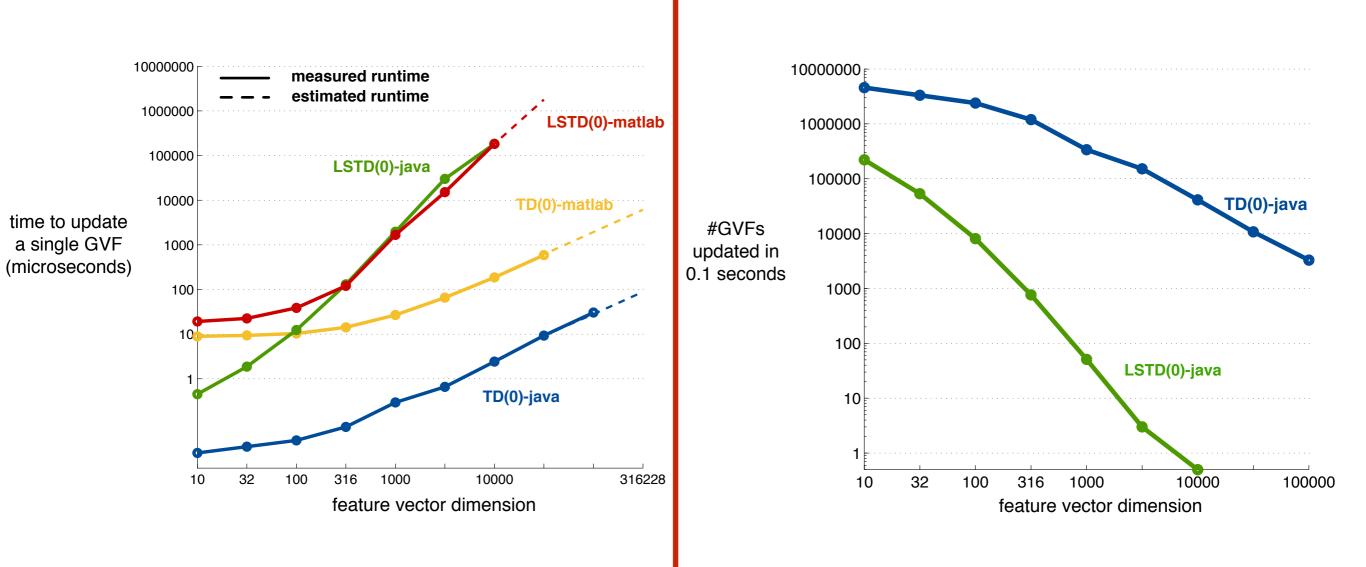
□ After years of research, including:

- * weighted importance sampling
- ***** using recognizers to restrict the updates
- No TD methods that have general convergence results
- Worse, these methods exhibit massive variance in practice
- □ There are other methods that do TD-like updates ...

Criteria for an off-policy, policy evaluation algorithm

- □ Bootstraps (genuine TD)
- Works with linear function approximation (stable, reliably convergent)
- \Box Is simple, like linear TD O(n)
- Learns fast, like linear TD
- □ Can learn off-policy
- Learns from online and incrementally

Does linear complexity really matter?



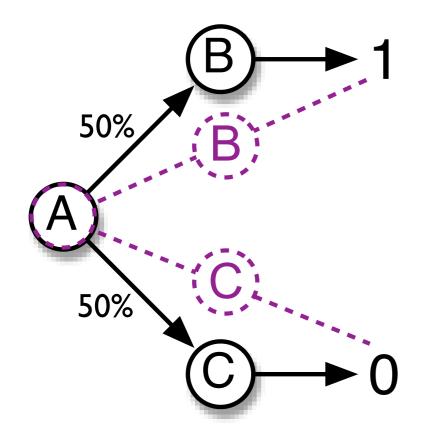
Residual gradient methods

Baird—the guy that came up with the counterexample for TD—also proposed the residual gradient algorithm:

$$\theta_{t+1} \leftarrow \theta_t + \alpha [R_{t+1} + \gamma \theta_t^\top \phi_{t+1} - \theta_t^\top \phi_t] (\gamma \phi_{t+1}' - \phi_t)$$

- □ This algorithm requires two independent samples of the next-state feature vector (ϕ and ϕ '), thus
 - * either incur bias by using the same feature vector for both
 - ***** or are restricted to deterministic domains

Residual gradient methods



□ The true value are:

- * V(A) = 0.5; V(B) = 1; V(C) = 0;
- * that is what TD learns
- The biased version of the RG algorithm learns:
 - ***** V(A) = 0.5; V(B) = 0.75; V(C) = 0.25;
 - it uses the terminal reward and V(A) to update the V(B) and V(C)
 - * this is called **backwards bootstrapping**

Residual gradient methods

- Even when we use the—unbiased—two sample version of RG we can still learn the wrong solution
 - * counterexample proposed by Sutton
 - * function approximation makes two states indistinguishable
 - ***** RG is still backward bootstrapping
- RG is still of interest because it is a true stochastic gradient descent algorithm with respect to an objective function
 - ★ but TD is not

Policy evaluation

□ Consider the case of linear function approximation where we have one feature vector for each state $\phi(s) \forall s \in S$

***** and Φ is a $|S| \times n$; each row corresponds to the feature vector for a state

- □ We can write our approximation of the value function, $V_{\theta} = \Phi \theta$, where V_{θ} is $|S| \ge 1$ vector
- □ The Bellman equation for policy π can be written in matrix form:

 $\Box V_{\theta} = R + \gamma P^{\pi} V_{\theta}$

- ***** if we can find a θ for which this is true we have found the value function for π
- * this is called a fixed point equation

Matrix notation

 $\Box \, V_\theta = R \, + \, \gamma P^\pi \, V_\theta$

R is a vector, |S| x 1, of average rewards; one for each state

* $R(s) = E[R_{t+1}|S_t = s, \pi]$

 $\square P^{\pi}$ is an $|S| \times |S|$ transition matrix, where

* $P^{\pi}(i,j)$ = probability of transitioning from i to j under π

 $|\mathcal{S}| = 3 \text{ and } \phi(1) = [1, 0, 0]^{\top}, \ \phi(2) = [0, 1, 0]^{\top}, \text{ and } \phi(3) = [0, 0, 1]^{\top}$ Therefore $\Phi = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Let $\gamma = 0.9$, and $R = [1.2, -.4, 3]^{\top}$, and $\theta = [.1, .1, .1]^{\top}$ Let $P^{\pi} = \begin{bmatrix} 0 & .5 & .5 \\ .5 & 0 & .5 \\ .5 & .5 & 0 \end{bmatrix}$

What is $v_{\pi}(s)$ for each s? $V_{\theta} = \Phi \theta = [0.1, 0.1, 0.1]^T$

We can directly solve for V_{θ} :

$$V_{\theta} = R + \gamma P^{\pi} V_{\theta}$$
$$V_{\theta} - \gamma P^{\pi} V_{\theta} = R$$
$$(\mathcal{I} - \gamma P^{\pi}) V_{\theta} = R$$
$$V_{\theta} = (\mathcal{I} - \gamma P^{\pi})^{+} R$$

The true value function is:

$$\left(\begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix} - 0.9 \begin{bmatrix}0 & .5 & .5\\.5 & 0 & .5\\.5 & .5 & 0\end{bmatrix}\right)^{-1} \begin{bmatrix}1.2\\-.4\\3.0\end{bmatrix} = \begin{bmatrix}12.6207\\11.5172\\13.8621\end{bmatrix}$$

Let's check that it is the true value function; plug it into the Bellman equation:

$$\begin{aligned} V_{\theta} &= R + \gamma P^{\pi} V_{\theta} \\ \begin{bmatrix} 12.6207 \\ 11.5172 \\ 13.8621 \end{bmatrix} = \begin{bmatrix} 1.2 \\ -.4 \\ 3.0 \end{bmatrix} + 0.9 \begin{bmatrix} 0 & .5 & .5 \\ .5 & 0 & .5 \\ .5 & .5 & 0 \end{bmatrix} \begin{bmatrix} 12.6207 \\ 11.5172 \\ 13.8621 \end{bmatrix} \\ \begin{bmatrix} 12.6207 \\ 11.5172 \\ 13.8621 \end{bmatrix} = \begin{bmatrix} 12.6207 \\ 11.5172 \\ 13.8621 \end{bmatrix} \end{aligned}$$

What is the value of θ ? $\theta = \Phi^+ V_{\theta}$. So in our example $\theta = [12.6, 11.5, 13.8]$.

What if $\phi(s) = [1]$ for all s.

Then
$$\Phi = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

and $\theta = \Phi^+ V_{\theta} = \left(\begin{bmatrix} 1\\1\\1 \end{bmatrix} \right)^+ \begin{bmatrix} 12.6\\11.5\\13.8 \end{bmatrix} = \begin{bmatrix} 12.6333 \end{bmatrix}$

and now
$$\Phi \theta = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 12.6667 \\ 12.6667 \end{bmatrix} = \begin{bmatrix} 12.6667 \\ 12.6667 \\ 12.6667 \end{bmatrix}$$

Again, Let's check that it is the true value function; plug it into the Bellman equation:

 $V_{\theta} = R + \gamma P^{\pi} V_{\theta}$ $\begin{bmatrix} 12.6667\\12.6667\\12.6667\\12.6667 \end{bmatrix} = ? \begin{bmatrix} 1.2\\-.4\\3.0 \end{bmatrix} + 0.9 \begin{bmatrix} 0 & .5 & .5\\.5 & 0 & .5\\.5 & .5 & 0 \end{bmatrix} \begin{bmatrix} 12.6667\\12.6667\\12.6667 \end{bmatrix}$ $\begin{bmatrix} 12.6000\\11.0000\\14.4000 \end{bmatrix}$

Objective functions for offpolicy policy evaluation

We have many possible options for an objective function

Mean squared error between our estimated value function and the true value function:

$$MSE(\theta) = \sum d_s \left(V_{\theta}(s) - V(s) \right)^2$$

* where d_s is the limiting distribution over states while following the behavior policy μ

* $d_s = \lim t \rightarrow \infty pr\{S_t = s\}$

We can express this in matrix form

 $MSE(\theta) \stackrel{\text{def}}{=} \| V_{\theta} - V \|_{D}^{2}$ * where D is |S| X |S| matrix with diagonal = d_s, and $||v||^{2}_{D} = v^{T}Dv$

Objective functions for off-policy policy evaluation $MSE(\theta) \stackrel{\text{def}}{=} ||V_{\theta} - V||_{D}^{2}$ But we don't have access to the true value function :(

Instead we could start with the Bellman equation

 $\Box \ V_{\theta} = R + \gamma P^{\pi} \, V_{\theta}$

- \Box Let T, the **bellman operator**, replace R + γP^{π}
 - $\bigstar V_{\theta} = R + \gamma P^{\pi} V_{\theta}$
 - * $V_{\theta} = TV_{\theta}$

□ Which leads to the mean squared bellman error objective:

$$MSBE(\theta) = \| V_{\theta} - TV_{\theta} \|_{D}^{2}$$

This is what residual gradient algorithms optimize

□ **NOTE**: D = diag(d_s) and P^{π} are about different policies $\pi \neq \mu$

Projection is important $MSBE(\theta) = \|V_{\theta} - TV_{\theta}\|_{D}^{2}$

We cannot always solve the MSBE because it ignores the effect of function approximation

□ For example,

- ***** If $\Phi = [1]$ for each state, and R is some vector of rewards
- ***** then $R + \gamma P^{\pi} V_{\theta}$ cannot be represented as $\Phi \theta$
- * that is there is no vector θ that can represent the value function when the features for each state = a bias unit
- ***** the **true** V_{θ} is outside the class of value functions you can represent with Φ
- □ We want to find a θ that takes into account that the range of functions we can learn is limited by $\mathbf{\Phi}$
 - * we want our objective function to find the best θ in this restricted class of functions

□ Like the MSBE, but takes the function class into account

Define a projection operator which takes any value function and projects it to the nearest value function representable by our function approximation

$$\Pi v = V_{\theta}$$
 where $\theta = \arg\min_{\theta} \| V_{\theta} - v \|_{D}^{2}$

□ In the case of linear function approximation, the projection can be expressed in matrix form independent of θ :

$$\Pi = \Phi (\Phi^\top D \Phi)^{-1} \Phi^\top D$$

□ Giving us the mean squared projected Bellman error $MSPBE(\theta) = \| V_{\theta} - \Pi T V_{\theta} \|_{D}^{2}$

Mean squared projected bellman error $MSPBE(\theta) = \|V_{\theta} - \Pi T V_{\theta}\|_{D}^{2}$

□ It turns out TD(0) converges to the minimum of the MSPBE

- ***** the θ such that $V_{\theta} = \mathbf{\Pi} T V_{\theta}$
- * the so called **TD-Fixed point** solution
- LSTD also converges to this solution
- And the algorithm we describe next converge to this fixed point as well
- The objective is convex
- □ There is MSPBE variant for eligibility traces (more later...)

Gradient-descent learning recipe

- □ Use calculus to analytically compute the gradient $∇_{\theta}MSPBE(\theta)$
- Determine the ``sample" versions of the gradient so that you can sample on every time step and whose expected value equals the gradient
- Take small steps in proportional to the sample gradient:
 - * $\theta_{t+1} = \theta_t \alpha \nabla_{\theta} MSPBE(\theta)$

Gradient of the MSPBE

The TDC algorithm

□ On each time step

□ Update two parameter vectors: $\begin{array}{c} \underset{linear TD(0)}{\underset{t \in \mathbf{M}}{\underset{t \neq 1}{\text{correction}}}} \\ \theta_{t+1} \leftarrow \theta_t + \alpha \rho_t \delta_t \phi_t \\ \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \beta (\rho_t \delta_t - \phi_t^\top \mathbf{w}_t) \phi_{t+1} \end{array}$

 $\Box \text{ As before:}$ $\delta_t = R_{t+1} + \gamma \theta_t^\top \phi_{t+1} - \theta_t^\top \phi_t \qquad \rho_t \stackrel{\text{\tiny def}}{=} \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)}$

The TDC algorithm $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \beta(\rho_t \delta_t - \phi_t^\top \mathbf{w}_t)\phi_t$

- □ Second set of weights, *w*, start equal to zero
- ^{\Box} Their job is to estimate the expected TD-error, if samples we generated under policy π
- □ We are *correcting* the main weight update by w's estimate of the expected TD-error in state S_{t+1}:

$$\theta_{t+1} \leftarrow \theta_t + \alpha \rho_t (\delta_t \phi_t - \gamma (\phi_t^\top \mathbf{w}_t) \phi_{t+1})$$

□ As the primary weights (θ) converge, w→**0**

The TDC algorithm $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \beta(\rho_t \delta_t - \phi_t^\top \mathbf{w}_t)\phi_t$

□ The learning-rate parameter on the w is usually different from α

- \square In many problems especially on-policy ones, it works best to set β near zero
 - ***** thus we are basically doing off-policy linear TD(0)
- \Box In other problems, like Baird's, β is several times larger than α
 - ***** *w* learns faster than θ
 - ***** essential for divergence
- This is a called a two time-scale algorithm; makes convergence analysis challenging

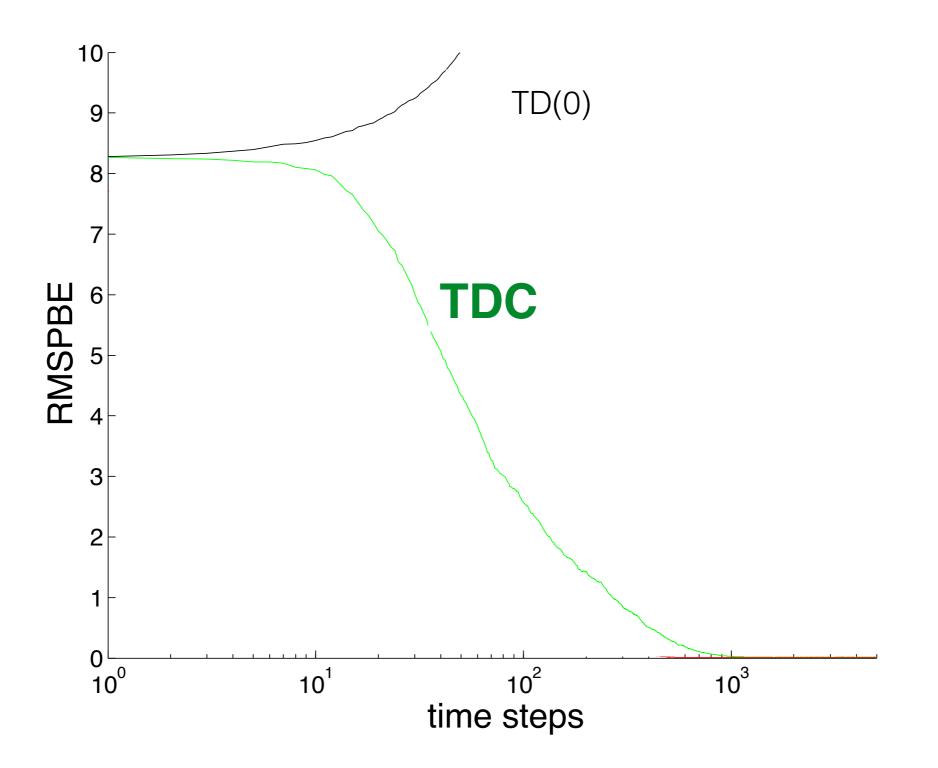
TDC convergence

- □ Assume ...
 - * step-size parameters are decayed in a particular way
 - * α goes to zero faster than β goes to zero
 - ***** various matrices are non-singular
 - * AND the data is i.i.d; each ($\phi(S_t)$, R_{t+1} , $\phi(S_{t+1})$) is sampled i.i.d

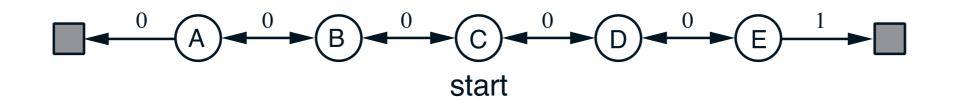
Then

* the parameter vector θ converges with probability one to the TD fixpoint

Performance on Baird's

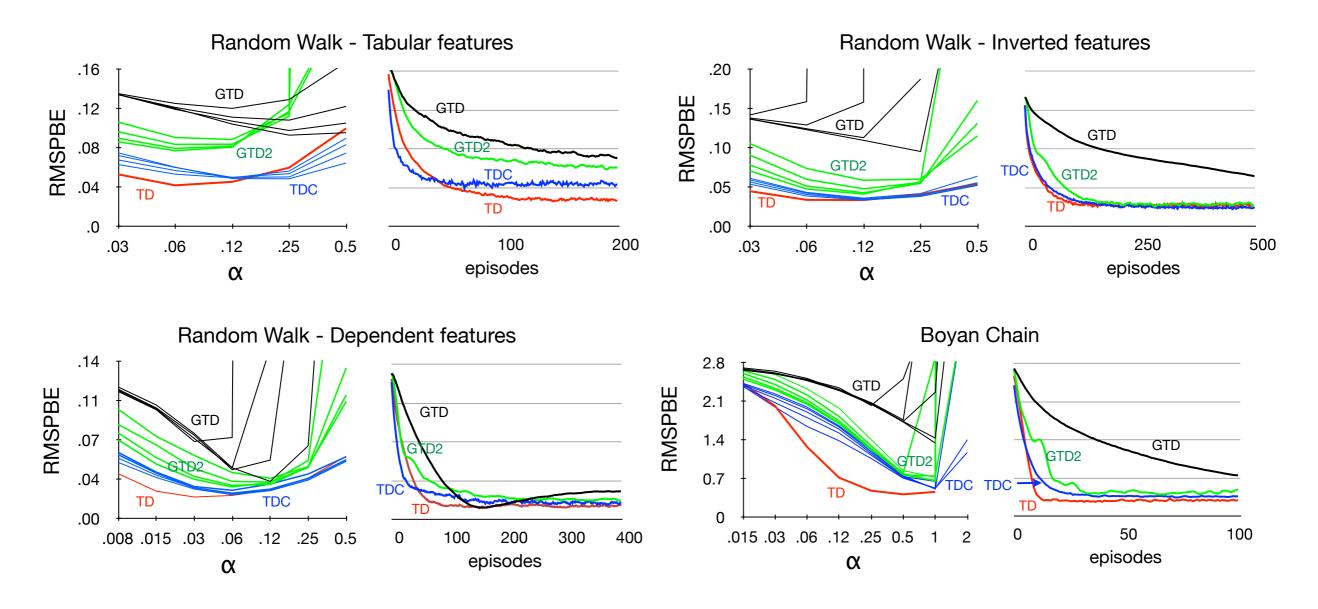


Markov chain (on-policy)



- 3 different feature representations.
 - 5 tabular features
 - 5 inverted-tabular features
 - 3 features (genuine FA)

Markov chain Results (on-policy)



TD,TDC > GTD-2 > GTD Sometimes TD > TDC

MSPBE + eligibility traces

$MSPBE(\theta) \stackrel{\text{\tiny def}}{=} ||\Phi\theta - \Pi T^{\pi,\lambda} \Phi\theta||_D^2$

□ We need to define a new version of the MSPBE

- So that when we take the gradient of this objective we end up with a TD-stlye algorithm that uses eligibility traces
- This new objective can be written in terms of expectations over observed data—rewards, and feature vectors that we see over time

 $MSPBE(\theta) = \mathbb{E}[\delta_t \mathbf{e}_t \mid \mu] \mathbb{E}[\phi_t \phi_t^\top \mid \mu] \mathbb{E}[\delta_t \mathbf{e}_t \mid \mu]$

$MSPBE(\theta) = \mathbb{E}[\delta_t \mathbf{e}_t \mid \mu] \mathbb{E}[\phi_t \phi_t^\top \mid \mu] \mathbb{E}[\delta_t \mathbf{e}_t \mid \mu]$

- Again we take the gradient
- Use a secondary weight vector to take care of one part of the gradient
- Then stochastically sample the gradient
- □ We arrive at an eligibility trace enabled TDC algorithm, that we will now call
 - * $GTD(\lambda)$

$GTD(\lambda)$

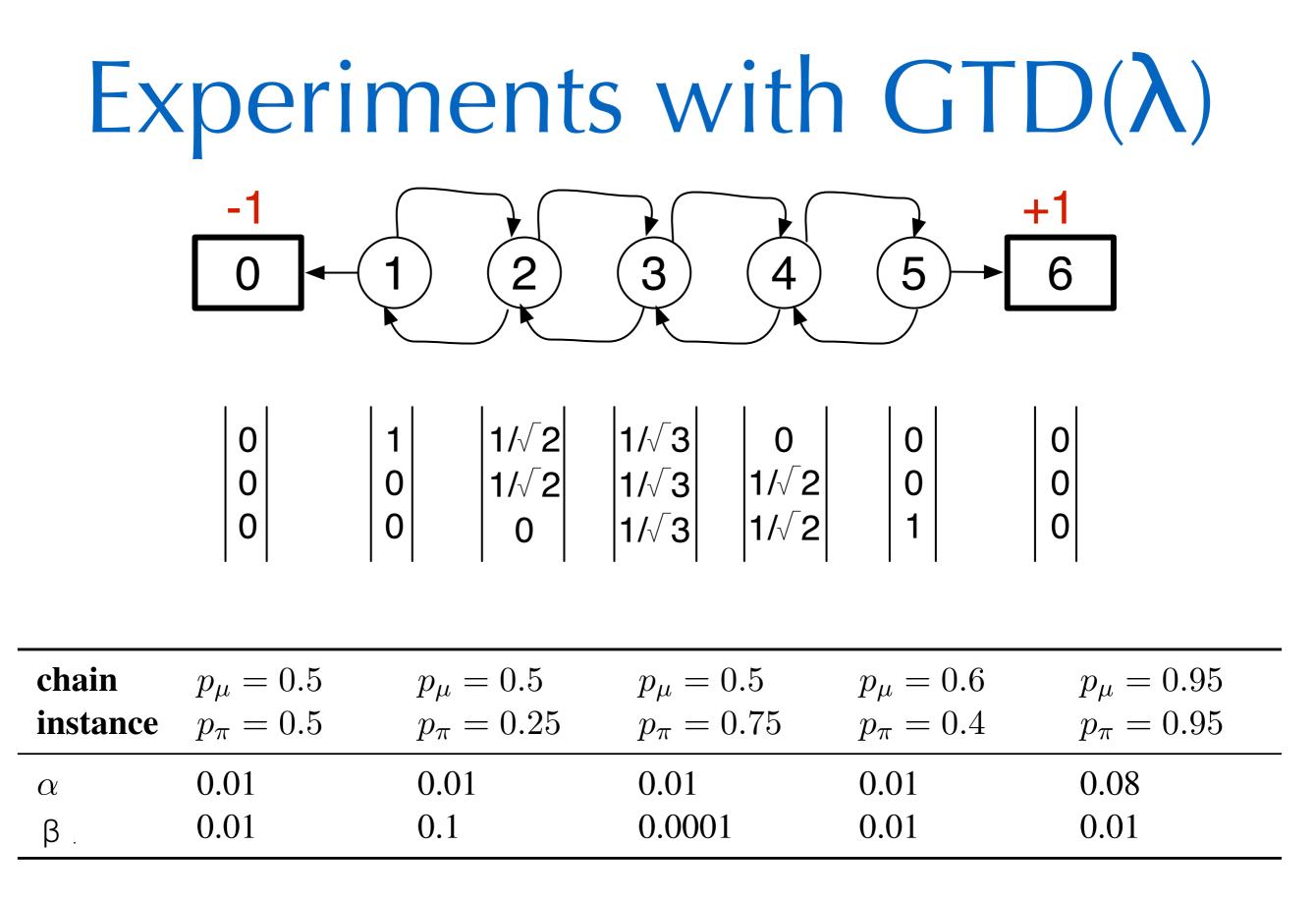
$$\mathbf{e}_t \leftarrow \rho_t(\gamma \lambda \mathbf{e}_{t-1} + \phi_t)$$

$$\theta_{t+1} \leftarrow \theta_t + \alpha \left(\delta_t \mathbf{e}_t - \gamma (1 - \lambda) (\mathbf{e}_t^\top \mathbf{w}_t) \phi_{t+1} \right)$$

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \beta \left(\delta_t \mathbf{e}_t - (\phi_t^\top \mathbf{w}_t) \phi_t \right)$$

$GTD(\lambda)$ $\theta_{t+1} \leftarrow \theta_t + \alpha \left(\delta_t \mathbf{e}_t - \gamma (1 - \lambda) (\mathbf{e}_t^\top \mathbf{w}_t) \phi_{t+1} \right)$

- \Box If $\lambda = 0$, then GTD(λ) becomes TDC
- \Box If $\lambda = 1$, then the correction term disappears
 - * then we have linear, off-policy Monte Carlo policy evaluation
- Accumulating trace
- This algorithm also converges
 - * but we have a requirement that the traces stay bounded



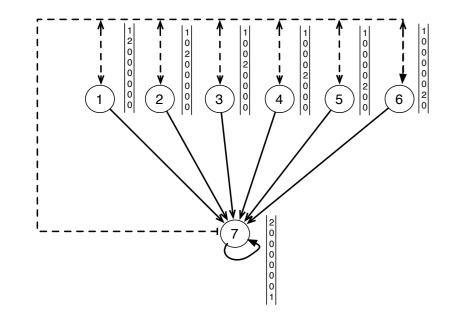
Off-policy, policy evaluation with FA

- □ linear TD($0 \le \lambda < 1$) can diverge
- □ off-policy Monte Carlo, linear TD(1) converge
 - * can exhibit large variance
- Residual gradient method converges
 - * can learn incorrect predictions with function approximation
 - backward bootstrapping problem
- □ TDC converges
 - * requires an extra set of weights and another step-size parameter

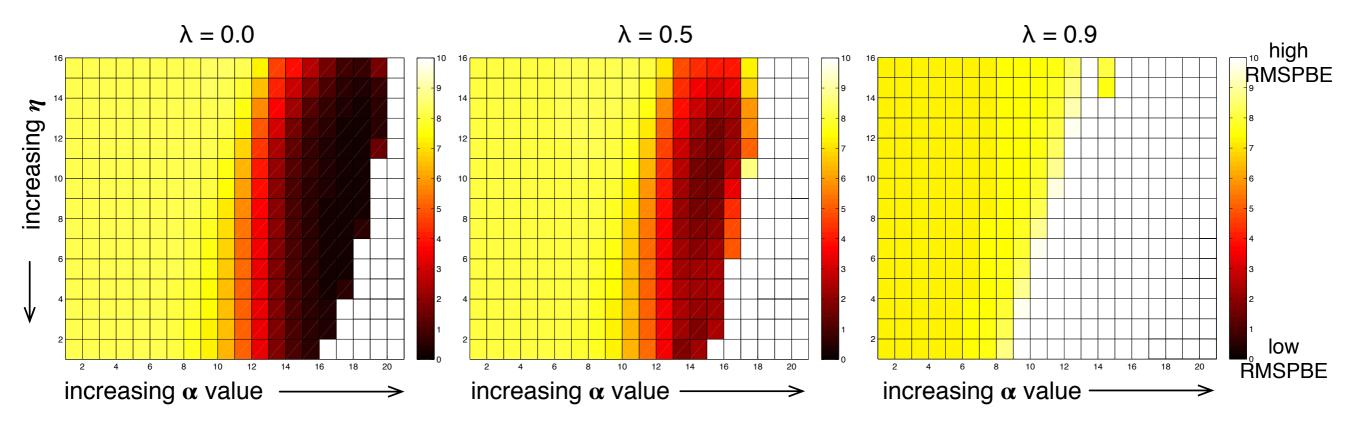
 $GTD(\lambda)$ with FA

$\ \ \Box \ GTD(\lambda) \ converges$

- * when $\lambda = 1$, does not correspond to any off-policy Monte Carlo algorithm
- * needs two sets of weights, two learning rate parameters
- ***** can behave very poorly on some off-policy problems



GTD(λ) on Baird's counterexample



 $\mathbf{e}_t \leftarrow \rho_t(\gamma \lambda \mathbf{e}_{t-1} + \phi_t)$

Problem: GTD($\lambda = 1$), does not correspond to any off-policy Monte Carlo algorithm

Solution: Provisional TD

- * new derivation technique to fix this technical problem
- ***** simple algorithm
- * when on-policy (ρ =1) exactly performs regular TD updates (not true for GTD(λ) unless β =0)
- ***** converges in the tabular case
- * works well in practice

Problem: GTD($\lambda = 1$), does not correspond to any off-policy Monte Carlo algorithm

Solution: Provisional TD

- * new derivation technique to fix this technical problem
- ***** simple algorithm
- * when on-policy (ρ =1) exactly performs regular TD updates (not true for GTD(λ) unless β =0)
- ***** converges in the tabular case
- * works well in practice

Problem: GTD($\lambda = 1$), uses accumulating traces which can perform poorly

Solution: True online GTD

- new derivation technique to use Dutch Traces—like True-online
 TD
- Complex algorithm
- ***** Three eligibility traces
- * converges
- ***** works well in practice, 2-3 times slower than $GTD(\lambda)$

Problem: GTD($\lambda = 1$), requires two sets of weight vectors

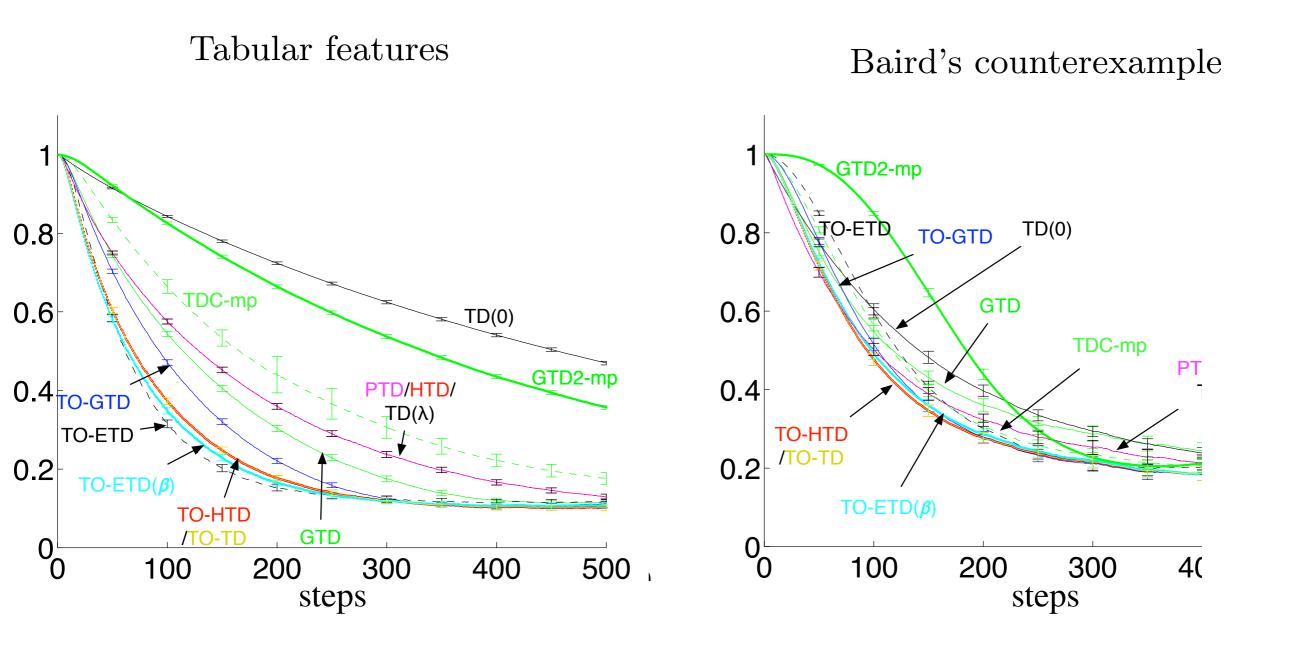
Solution: Emphatic TD

- * new derivation technique
- * Simple algorithm, one set of weights, one learning rate
- * Strong convergence results
- * works well in practice
- * can be extended to use Dutch traces: true-online ETD

□ Other approaches we won't discuss:

- mirror-proc gradient TD methods
- * hybrid temporal difference learning
- ***** off-policy actor critic methods

There is still algorithm research to be done on this basic, fundamental problem



 $GQ(\lambda)$

Learns state-action value functions, Q instead of V

$$\theta_{t+1} = \theta_t + \alpha_t \Big[\delta_t e_t - \gamma (1-\lambda) (w_t^\top e_t) \bar{\phi}_{t+1} \Big],$$

$$w_{t+1} = w_t + \beta_t \Big[\delta_t e_t - (w_t^\top \phi_t) \phi_t \Big],$$

$$e_t = \phi_t + \gamma \lambda \rho_t e_{t-1},$$

 $\phi_t = \phi(S_t, A_t) \qquad \qquad \bar{\phi}_t = \sum_a \pi(a \mid S_t) \phi(S_t, a)$

greedy-GQ(λ)

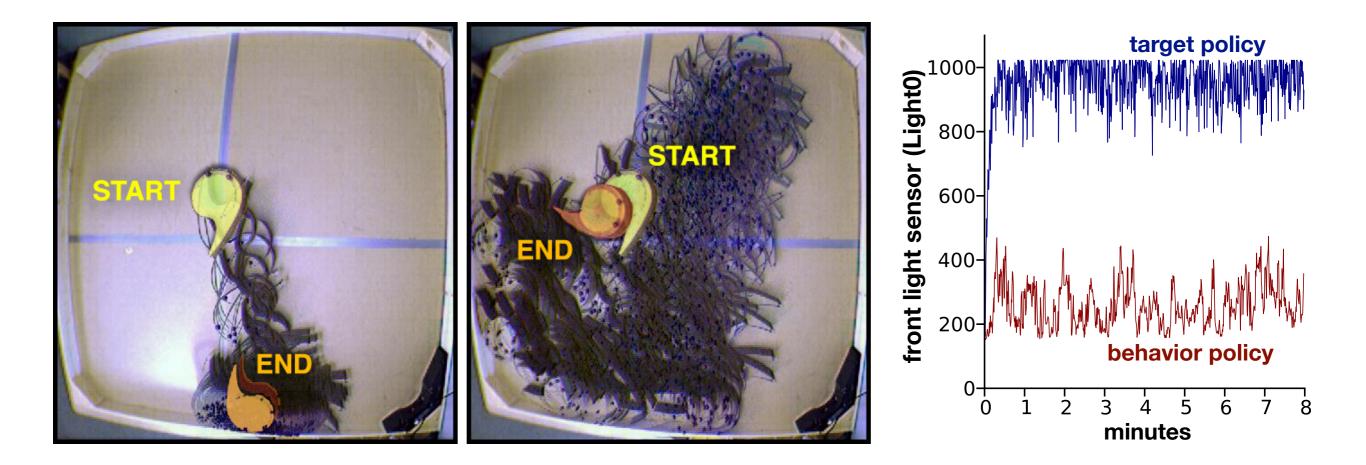
- Do policy iteration with the state-action value function learned by $GQ(\lambda)$
- □ **Behavior** policy—µ—is some exploratory policy
- □ Target policy—π—is greedy with respect to learned Q_t(s,a)
- Off-policy in the same way that Q-learning is offpolicy
- BUT, traces are not cutoff completely when µ selects an action that is not greedy with respect to Q

greedy-GQ(λ) on a robot

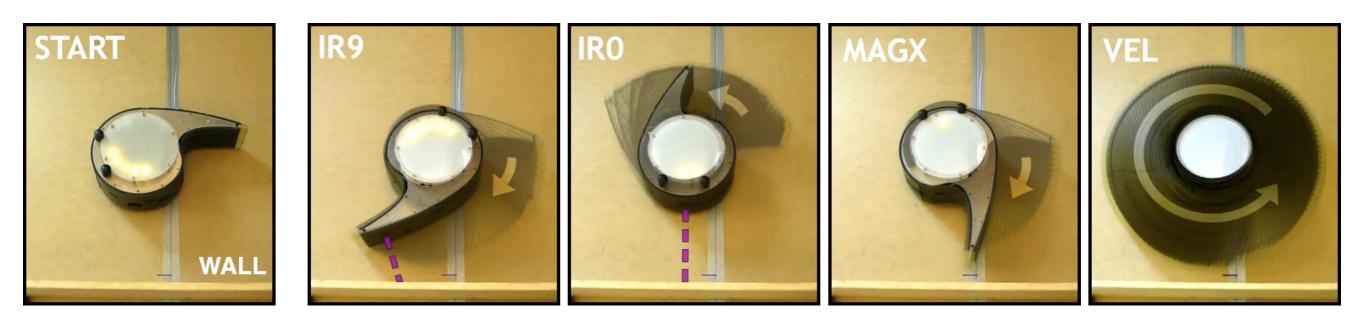
- □ **Behavior** policy—µ—uniform random amongst 27 actions
 - * corresponding to constant motor velocities for .5 seconds
- **Reward** = from light sensor reading, $\gamma = 0.9$
- □ Target policy—π—is greedy with respect to learned Qt(s,a)

Can the robot learn a policy to goto the brightest source of light, from data generated by a random policy?

greedy-GQ(λ) on a robot



More greedy-GQ(λ) on a robot



References

Gradient temporal difference learning

- http://incompleteideas.net/sutton/papers/SMPBSSW-09.pdf
- http://homes.soic.indiana.edu/adamw/phd.pdf
- * http://incompleteideas.net/sutton/papers/maei-thesis-2011.pdf
- PTD: <u>http://incompleteideas.net/sutton/papers/SMPvH-ICML-2014.pdf</u>
- ETD: <u>http://incompleteideas.net/sutton/papers/SMW-emphasis-2015.pdf</u>
 Mirror pros gradient TD
- https://people.cs.umass.edu/~mahadeva/papers/gtduai2015.pdf
 Hybrid TD: <u>http://arxiv.org/pdf/1602.08771.pdf</u>
- GQ: <u>http://incompleteideas.net/sutton/papers/maei-sutton-10.pdf</u>