
Sound Off-policy TD learning 



Off-policy, policy evaluation 
with linear FA

Conventional on-policy TD(0) with linear function 
approximation: 

Conventional on-policy TD(0) with linear function 
approximation—ordinary importance sampling:
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Instability of Bootstrapping 
methods

If we combine: 

bootstrapping + function approximation (even linear) + off-policy 
learning 

bootstrapping + non-linear function approximation—like a neural 
network 

This means that TD(λ), Expected Sarsa, and Q-
learning are all not sound 

we cannot prove convergence in general settings 

we can demonstrate divergence empirically with counterexamples



Baird’s famous 
counterexample

Target policy always takes action one in every state 

Behavior policy most of the time (6/7) takes action two in 
every state 

Large importance sampling corrections 
Initial weight vector is high-magnitude 

All states share one feature component 

Rewards are all zero 

Zero error solution is possible, can perfectly represent the 
value function



Baird’s famous 
counterexample

7.2.1 Problem

We use a variant of Baird’s counterexample (Baird, 1995) described by Maei (2011) and

shown in Figure 7.5. We will refer to this problem slightly inaccurately as Baird’s coun-

terexample. This MDP contains seven discrete states and no terminal states; it is a contin-

uing problem. There are two actions available in each state: action one (solid arrow) and

action two (dashed arrow). Action one moves the demon to state seven from every state,

including from state seven. The second action, in states one to six, moves the demon to a

new state from one to six randomly with equal probability, but never to state seven. The

second action, in state seven, moves the demon to any state from one to six, randomly with

equal probability, but never to state seven.
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Figure 7.5: A variation of Baird’s counterexample due to Maei (2011).

The learning problem is specified by the question functions. The target policy selects

action one deterministically in every state. The cumulants are zero on every transition, and

�
t

is constant and equal to 0.99. This setting of the question functions specifies a single

GVF to learn.

The answer functions for this task are straightforward. The behavior policy selects

action one with probability 1/7, and action two with probability 6/7, in every state. The

feature vectors for each state are given in Figure 7.5. The � value is a constant function

equal to 0.0. The learning task specified by these question functions has a solution of

v(s; ⇡, �, z) = 0 for all states, with w =

~
0 and w = [�2, 1, 1, 1, 1, 1, 1, 4]c where c 2 R:

an infinite number of solutions.

108

⇡(1|·) = 1.0

⇡(2|·) = 0.0

µ(1|·) = 1/7

µ(2|·) = 6/7

The combination of question and answer functions causes the parameter value estimates

of TD(0  � < 1) to diverge to infinity. The difficulty is due to the interaction of the

initialization of the weight vector, w0 = [1, 1, 1, 1, 1, 1, 1, 10]

>, the large value of �, the

feature component shared amongst all states, and the mis-match between the target and

behavior policies.

Let us trace some transitions through the MDP and see what happens to the off-policy

linear TD(0) algorithm, described in Chapter 2. Consider the first transition into state seven.

The weight vector w

t

will still equal [1, 1, 1, 1, 1, 1, 1, 10] because any transitions from

states one through six are off-policy, with ⇢
t

= 0, and cause no update. The TD error for

the transition from state six to seven will be:

�
t

= z
t

+ �
t+1x

>
t+1wt

+ x

>
t

w

t

= 0 + 0.99(2 + 10) � (1 + 2) = 8.88.

Assuming ↵ = 0.1, then w

t+1 becomes [7.216, 1, 1, 1, 1, 1, 13.432, 10]

>:

w

t+1 = w

t

+ ↵⇢
t

�
t

x

t

= w

t

+ 0.1(7.0)8.88x

t

.

Next, the behavior will likely transition the demon into some other state from one to six,

with a TD error of zero and no update. The demon will jump around between states one

through six (again with no updates to w

t

) and then eventually transition to state seven

again. Every time the demon transitions from a state to state seven for the first time, w(1)

t

is increased along with the component of w

t

corresponding to the state the transition origi-

nated. Subsequent repeated transitions into state seven (e.g., six to seven from the example

above) will cause alternating small magnitude negative and positive updates to w(0)

t

and

no changes to w(8)

t

. Only a transition from state seven to seven will depress w(8)

t

. For

example, if such a transition happened next:

�
t

= 0 + 0.99(24.432) � 24.432 = �0.24432,

then w

t

= [6.873952, 1, 1, 1, 1, 1, 13.432, 9.828976]

>. These seven to seven transitions are

rare and produce smaller magnitude updates compared to the transitions into state seven.

Overtime, the magnitude of �
t

and w

t

grow larger and larger causing divergence in the

value estimates.

7.2.2 The role of h

The ambition of these experiments, is to investigate the contribution of the secondary

weights and the parameter sensitivity of the GTD(�) in a problem in which the TD(�)
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Linear off-policy TD(0)

Results, analysis, and conclusions

The results of our experiment show that GTD(0) with ↵
h

= 0 diverged, GTD(0) with

learned h did not diverge, and GTD(0) with h

? performed best over 5000 steps on Baird’s

counterexample. The best performance of the variant of GTD(0) with learned h was

achieved with ↵ = 0.0125 and ↵
h

= 3.37500 ⇤ ↵. The best performance of GTD(0)

with h = h

? was achieved with ↵ = 0.025.
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Figure 7.6: The learning curves for three variants of GTD on Baird’s counterexample. Plot-
ted is the RMSPBE verses time-step with a log-scale on the x-axis. Each variant uses the
best parameter’s found over a large systematic sweep.

Consider the updates of the GTD(0) algorithm in Baird’s counterexample. Recall that

the GTD(0) algorithm updates the primary weights, w
t+1, corresponding to the next state’s

feature vector by a correction term:

w

t+1 = w

t

+ ↵⇢
t

[�
t

x

t

� �
t+1(x

>
t

h

t

)x

t+1],

since � = 0. In Baird’s counterexample, the correction helps by depressing the value

of w(8). The GTD(0) algorithm’s estimate of �
t

⇡ x

>
t

h

t

will become large after several

transitions into state seven. Once x

>
t

h

t

becomes large, w(8) will be decreased proportional

to (�↵
t

(x

>
t

h

t

)x

t+1) on each transition into state seven. In this problem, the correction

helps prevent divergence and helps GTD(0) find a close approximation to the correct weight

vector, as supported by the results in Figure 7.6.

From these results in Figure 7.6 we conclude that the secondary weights of GTD(0) are
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What is going on?
Consider the first trans. 6 → 7 

weight vector still = initialization 

𝜹 = 0 + .99(12) - 3 = 8.88 

w = [7.2, 1, 1, 1, 1, 1, 13.4, 10]  

Consider the first trans. 1 → 7 

𝜹 = 14.9717 

w = [17.7, 22 ,1,1,1,1,13.4,10] 

Consider the first trans. 6 → 7 

𝜹 = 0 + .99(45.4) - 44.5602 = 0.378 

w = [17.96,22.0,1,1,1,1,14,10] 

w(10) is causes problems here, but only 7 → 7 can 
cause w(10) to reduce 

e.g., 7 → 7 changes w(10) from 10 to 9.6785

7.2.1 Problem

We use a variant of Baird’s counterexample (Baird, 1995) described by Maei (2011) and

shown in Figure 7.5. We will refer to this problem slightly inaccurately as Baird’s coun-

terexample. This MDP contains seven discrete states and no terminal states; it is a contin-

uing problem. There are two actions available in each state: action one (solid arrow) and

action two (dashed arrow). Action one moves the demon to state seven from every state,

including from state seven. The second action, in states one to six, moves the demon to a

new state from one to six randomly with equal probability, but never to state seven. The

second action, in state seven, moves the demon to any state from one to six, randomly with

equal probability, but never to state seven.
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Figure 7.5: A variation of Baird’s counterexample due to Maei (2011).

The learning problem is specified by the question functions. The target policy selects

action one deterministically in every state. The cumulants are zero on every transition, and

�
t

is constant and equal to 0.99. This setting of the question functions specifies a single

GVF to learn.

The answer functions for this task are straightforward. The behavior policy selects

action one with probability 1/7, and action two with probability 6/7, in every state. The

feature vectors for each state are given in Figure 7.5. The � value is a constant function

equal to 0.0. The learning task specified by these question functions has a solution of

v(s; ⇡, �, z) = 0 for all states, with w =

~
0 and w = [�2, 1, 1, 1, 1, 1, 1, 4]c where c 2 R:

an infinite number of solutions.
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⇡(1|·) = 1.0

⇡(2|·) = 0.0

µ(1|·) = 1/7

µ(2|·) = 6/7
The combination of question and answer functions causes the parameter value estimates

of TD(0  � < 1) to diverge to infinity. The difficulty is due to the interaction of the

initialization of the weight vector, w0 = [1, 1, 1, 1, 1, 1, 1, 10]

>, the large value of �, the

feature component shared amongst all states, and the mis-match between the target and

behavior policies.

Let us trace some transitions through the MDP and see what happens to the off-policy

linear TD(0) algorithm, described in Chapter 2. Consider the first transition into state seven.

The weight vector w

t

will still equal [1, 1, 1, 1, 1, 1, 1, 10] because any transitions from

states one through six are off-policy, with ⇢
t

= 0, and cause no update. The TD error for

the transition from state six to seven will be:
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Next, the behavior will likely transition the demon into some other state from one to six,

with a TD error of zero and no update. The demon will jump around between states one

through six (again with no updates to w

t

) and then eventually transition to state seven

again. Every time the demon transitions from a state to state seven for the first time, w(1)

t

is increased along with the component of w

t

corresponding to the state the transition origi-

nated. Subsequent repeated transitions into state seven (e.g., six to seven from the example

above) will cause alternating small magnitude negative and positive updates to w(0)

t

and

no changes to w(8)

t

. Only a transition from state seven to seven will depress w(8)

t

. For

example, if such a transition happened next:

�
t

= 0 + 0.99(24.432) � 24.432 = �0.24432,

then w

t

= [6.873952, 1, 1, 1, 1, 1, 13.432, 9.828976]

>. These seven to seven transitions are

rare and produce smaller magnitude updates compared to the transitions into state seven.

Overtime, the magnitude of �
t

and w

t

grow larger and larger causing divergence in the

value estimates.

7.2.2 The role of h

The ambition of these experiments, is to investigate the contribution of the secondary

weights and the parameter sensitivity of the GTD(�) in a problem in which the TD(�)
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Fixing TD with off-policy 
sampling

After years of research, including: 

weighted importance sampling 

using recognizers to restrict the updates 

No TD methods that have general convergence results 

Worse, these methods exhibit massive variance in 
practice 

There are other methods that do TD-like updates … 



Criteria for an off-policy, 
policy evaluation algorithm

Bootstraps (genuine TD) 

Works with linear function approximation (stable, 
reliably convergent) 

Is simple, like linear TD — O(n) 

Learns fast, like linear TD 

Can learn off-policy 

Learns from online and incrementally



Does linear complexity really 
matter?
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Figure 5.9: This graph shows an estimate of number of nexting predictions that could be
updated in a 100 millisecond time-step, assuming perfect parallelism on a four core CPU.
Note the log scale. These runtimes should be considered an approximation of what is
achievable with a full prediction learning system on a robot.

5.7 Other ways to encode nexting predictions

Using a constant � geometrically down-weights the contribution of future cumulant values

in the computation of the target, just as in conventional discounting down-weights future

reward in reinforcement learning. This usage of � can be called dispersive, because it

smoothly blurs the cumulants over time, whereas a non-dispersive � might place all the

weight at precisely one time-step in the future. The weighting of cumulants due to �,

follows an exponential profile. Although, not easily represented as a GVF, we might be

interested in other non-exponential weightings of future cumulants, including a rectangle

weighting, or a Gaussian weighting. Figure 5.10 shows several different weightings, both

dispersive and specific.

In order to better access these alternative weightings, and examine their usefulness of

nexting let us use each to form targets using data from the Critterbot. In Figure 5.11, we

see several different targets, each with a different weighting, plotted over time based on

IR beacon data from the Critterbot (no learned predictions are included, just the targets).

The by-k weighting illustrates that perfect precision using non-dispersive weightings may

not always be desirable, especially with low-level robot data. The target fluctuates widely

from time-step to time-step, which may make accurate prediction challenging. The other

weightings summarize future data in a more smooth fashion, while providing an intuitive

demonstration of anticipation—predicting the rise and fall of the cumulant in advance of

73

on a four core CPU, we can compute the number of predictions that could be updated in a 100

millisecond time-step for a given feature vector length. Figure 5.9 plots theses results. The results

indicate that the LSTD(0) algorithm can only update a single prediction within the time-step of our

robot, using the same size feature vector as we used in the nexting experiment.
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Figure 5.8: A plot of the average runtime used by the TD(0) and LSTD(0) algorithms to update a
single nexting demon with different feature vector lengths on a simulated problem. Note the log
scale. This graph also includes extrapolations of the runtimes exhibited by each algorithm. Both
TD(0) implementation fit a linear trend, which we then extrapolated to estimate the runtime for
larger feature vector lengths. The two LSTD(0) implementations exhibit a quadratic trend, which
is used to extrapolate the runtime of the LSTD implementations. See text for a description of the
experimental setup.

We conclude from these results that nexting with a quadratic learning method, like LSTD(0),

is not computationally feasible given the feature vectors we used and current commodity hardware.

Our approach to nexting involves learning many predictions in real-time with large feature vectors.

For our approach of nexting, we conclude that a linear-complexity TD method is more suitable, from

a computational perspective.

We might hope to improve upon the efficiency of LSTD(�) in several ways. For instance, nex-

ting predictions could share data structures. In particular, the A matrix and eligibility trace vector

of LSTD(�) could be shared amongst any demons with the same termination signal. This approach

is of limited value because, as highlighted by our timing results, we cannot update even one nex-

ting prediction with LSTD(�). Another option is to use lower-dimensional random projections to

estimate LSTD’s A matrix, therefore reducing computation. This optimization, like sharing data

structures, would involve more complex implementations of LSTD(�), whereas our conventional

implementation of TD(�) enabled large-scale, realtime parallel updating and accurate prediction.
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Residual gradient methods
Baird—the guy that came up with the 
counterexample for TD—also proposed the residual 
gradient algorithm: 

This algorithm requires two independent samples of 
the next-state feature vector (ɸ and ɸ’ ), thus 

either incur bias by using the same feature vector for both 

or are restricted to deterministic domains

✓t+1  ✓t + ↵[Rt+1 + �✓>t �t+1 � ✓>t �t](��
0
t+1 � �t)



Residual gradient methods
The true value are: 

V(A) = 0.5; V(B) = 1; V(C) = 0; 

that is what TD learns 

The biased version of the RG 
algorithm learns: 

V(A) = 0.5; V(B) = 0.75; V(C) = 0.25; 

it uses the terminal reward and V(A) to 
update the V(B) and V(C) 

this is called backwards bootstrapping

But if you minimize the 
expected TD error:
                       , 
then you get the solution

Even in the tabular case (no FA)   

Backward-bootstrapping example (1) 
(Dayan 1992)

Clearly, the true values are  

V (A) = 0.5
V (B) = 1

J(⇥) = E[�2]

Fast gradient-descent methods for temporal-difference learning with linear function approximation
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Figure 1. Geometric relationships between the square roots of the
two Bellman-error objective functions.

All the algorithms mentioned above find or converge to a
fixpoint of the composed projection and Bellman operators,
that is to a value of ⇤ such that

V� = �TV�. (4)

We call this value of ⇤ the TD fixpoint. In the current work,
we take as our objective the deviation from this fixpoint.
That is, we use as our objective function the mean-square
projected Bellman error:

MSPBE(⇤) = ⇥ V� ��TV� ⇥2
D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically. Although many
previous works have highlighted the goal of achieving the
TD fixpoint (4), the present work seems to be the first to
focus on the MSPBE as an objective function to be mini-
mized (but see Antos, Szepesvári and Munos 2008, p. 100).
Further insight into the difference between the two Bellman
error objective functions can be gained by considering the
episodic example in Figure 2.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(⇤) = E[⇥⌅]⇥ E[⇥⌅] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:

E
�
⌅⌅⇥

⇥
=

⇧

s

ds⌅s⌅
⇥
s = ⇥⇥D⇥,

E[⇥⌅] =
⇧

s

ds⌅s

⇤
Rs + �

⇧

s0

Pss0V�(s�)� V�(s)

⌅

= ⇥⇥D(TV� � V�),
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TD-fixpoint solution Residual-gradient solution With function approx...

Figure 2. Backward-bootstrapping example. In the left and mid-
dle panels, episodes begin in state A then transition either to B or
to C with equal probability before proceeding to termination with
a reward of 1 or 0 (all other transitions have zero reward). The ver-
tical positions of the states represent their values according to the
TD-fixpoint solution (left panel) and according to the residual-
gradient (RG) solution (middle panel; Baird 1995, 1999). State
A, for example, has height midway between 0 and 1 in both so-
lutions, corresponding to its correct value of 1

2 (because episodes
starting in A end half the time with a total reward of 1 and half
the time with a total reward of 0, and � = 1). In the TD solution,
states B and C are given values of 1 and 0 respectively, whereas
in the RG solution they are given the values 3

4 and 1
4 . The 1,0

values are correct in that these states are always followed by these
rewards, but they result in large TD errors, of ⇥ = ± 1

2 , on transi-
tions out of A. The RG solution has smaller TD errors, of ⇥ = ± 1

4 ,
on all of its transitions, resulting in a smaller mean-square TD er-
ror per episode of 1

4

2 ⇥ 2 = 1
8 as compared to 1

2

2
= 1

4 for the
TD solution. That is, the RG solution splits the TD error over
two transitions to minimize squared TD error overall. The RG so-
lution is also sometimes described as backwards bootstrapping—
making the value of a state look like the value of the state that
preceded it as well as the state that followed it. It has long been
recognized that backwards bootstrapping is to be avoided (Sutton
1988; Dayan 1992) but the RG algorithm has remained of inter-
est because it is a gradient-descent method and thus guaranteed to
converge (whereas TD(⇤) converges only on-policy) and because
it has a “two sample version” that minimizes the MSBE rather
than the squared TD error. The key difference here is that, from A,
the squared TD error tends to be large but the expected TD error
(the Bellman error) tends to be zero (as long as the B and C val-
ues are distributed symmetrically around 1

2 ). The TD solution 1,0
is in fact the minimum MSBE solution on this problem, and this
has led to the widespread belief that the MSBE solves the prob-
lem of backwards bootstrapping. However, this is not the case in
general; once function approximation is introduced, the MSBE
and MSPBE solutions differ, and the 3

4 , 14 solution may reappear.
An example of this is shown in the right panel, where the previ-
ous state A is split into two states, A1 and A2, that share the same
feature representation; they look the same and must be given the
same approximate value. Trajectories start in one of the two A
states each with 50% probability, then proceed deterministically
either to B and 1, or to C and 0. From the observable data, this
example looks just like the previous, except now taking multiple
samples is no help because the system is deterministic, and they
will all be the same. Now the 3

4 , 14 solution minimizes not just the
squared TD error, but the MSBE as well; only the MSPBE crite-
rion puts the minimum at the 1, 0 solution. The MSBE objective
causes function approximation resources to be expended trying
to reduce the Bellman error associated with A1 and A2, whereas
the MSPBE objective takes into account that their approximated
values will ultimately be projected onto the same value function.
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Residual gradient methods
Even when we use the—unbiased—two sample 
version of RG we can still learn the wrong solution 

counterexample proposed by Sutton 

function approximation makes two states indistinguishable 

RG is still backward bootstrapping  

RG is still of interest because it is a true stochastic 
gradient descent algorithm with respect to an 
objective function 

but TD is not



Policy evaluation
Consider the case of linear function approximation where we 
have one feature vector for each state ɸ(s) ∀ s ∈ S 

and ɸ is a |S| X n; each row corresponds to the feature vector for a state 

We can write our approximation of the value function, V𝜃 = ɸ𝜃, 
where V𝜃 is |S| X 1 vector 

The Bellman equation for policy π can be written in matrix 
form: 

V𝜃 = R + γPπ V𝜃 

if we can find a 𝜃 for which this is true we have found the value function for π 

this is called a fixed point equation



Matrix notation

V𝜃 = R + γPπ V𝜃 

R is a vector, |S| x 1, of average rewards; one for each 
state 

R(s) = E[Rt+1|St = s, π] 

Pπ  is an |S| X |S| transition matrix, where 

Pπ(i,j) = probability of transitioning from i to j under π



Matrix notation example
V✓ = R+ �P ⇡V✓

|S| = 3 and �(1) = [1, 0, 0]>, �(2) = [0, 1, 0]>, and �(3) = [0, 0, 1]>

Therefore � =

2

4
1 0 0

0 1 0

0 0 1

3

5

Let � = 0.9, and R = [1.2,�.4, 3]>, and ✓ = [.1, .1, .1]>

Let P ⇡
=

2

4
0 .5 .5
.5 0 .5
.5 .5 0

3

5

What is V (s) for each s? It is �✓ = [0.1, 0.1, 0.1]>

We can directly solve for V✓:

V✓ = R+ �P ⇡V✓

V✓ � �P ⇡V✓ = R

(I � �P ⇡
)V✓ = R

V✓ = (I � �P ⇡
)

+R

The true value function is:

0

@

2

4
1 0 0

0 1 0

0 0 1

3

5� 0.9

2

4
0 .5 .5
.5 0 .5
.5 .5 0

3

5

1

A
�1 2

4
1.2
�.4
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Objective functions for off-
policy policy evaluation

We have many possible options for an objective function 

Mean squared error between our estimated value function and the 
true value function: 

where ds is the limiting distribution over states while following the behavior policy μ 

ds = lim t→∞ pr{St = s}  

We can express this in matrix form 

where D is |S| X |S| matrix with diagonal = ds, and ||v||2
D = vTDv

Fast gradient-descent methods for temporal-difference learning with linear function approximation

2. Linear value-function approximation
We consider a prototypical case of temporal-difference
learning, that of learning a linear approximation to the
state-value function for a given policy and Markov deci-
sion process (MDP) from sample transitions. We take both
the MDP and the policy to be stationary, so their combina-
tion determines the stochastic dynamics of a Markov chain.
The state of the chain at each time t is a random variable,
denoted st 2 {1, 2, ..., N}, and the state-transition proba-
bilities are given by a matrix P . On each transition from
st to st+1, there is also a reward, rt+1, whose distribution
depends on both states. We seek to learn the parameter
✓ 2 <n of an approximate value function V✓ : S ! < such
that

V✓(s) = ✓>�s ⇡ V (s) = E

( 1X

t=0

�trt+1 | s0 = s

)
, (1)

where �s 2 <n is a feature vector characterizing state s,
and � 2 [0, 1) is a constant called the discount rate.

In this paper we consider one-step temporal-difference
learning (corresponding to � = 0 in TD(�)), in which
there is one independent update to ✓ for each state tran-
sition and associated reward. There are several settings
corresponding to how the state transitions are generated.
In the on-policy setting, for example, the state transitions
come directly from the continuing evolution of the Markov
chain. We assume that the Markov chain is ergodic and
uni-chain, so there exists a limiting distribution d such that
ds = limt!1 P(st = s).1 In the on-policy case, d is linked
to the transition probabilities (in particular, we know that
P>d = d) and this linkage is critical to the convergence
of algorithms such as conventional TD. In this paper, we
consider a general setting (introduced in Sutton, Szepesvári
& Maei 2009) in which the first state of each transition is
chosen i.i.d. according to an arbitrary distribution d that
may be unrelated to P (this corresponds to off-policy learn-
ing). This setting defines a probability over independent
triples of state, next state, and reward random variables,
denoted (sk, s0k, rk), with associated feature-vector random
variables �k = �sk and �0k = �s0

k
. From these we can de-

fine, for example, the temporal-difference error,

�k = rk + �✓>k �0k � ✓>k �k,

used in the conventional linear TD algorithm (Sutton
1988):

✓k+1  ✓k + ↵k�k�k, (2)

where ↵k is a sequence of positive step-size parameters.
1Our results apply also to the episodic case if ds is taken to be

the proportion of time steps in state s. In this case, the sum in (1)
is only over a finite number of time steps, the rows of P may sum
to less than 1, and � may be equal to 1 (as long as (�P )1 = 0).

3. Objective functions
An objective function is some function of the modifiable
parameter ✓ that we seek to minimize by updating ✓. In
gradient descent, the updates to ✓ are proportional to the
gradient or sample gradient of the objective function with
respect to ✓. The first question then, is what to use for the
objective function? For example, one natural choice might
be the mean squared error (MSE) between the approximate
value function V✓ and the true value function V , averaged
over the state space according to how often each state oc-
curs. The MSE objective function is

MSE(✓) =
X

s

ds (V✓(s)� V (s))2

def= k V✓ � V k2D .

In the second equation, V✓ and V are viewed as vectors with
one element for each state, and the norm k v k2D = v>Dv
is weighted by the matrix D that has the ds on its diagonal.

In temporal-difference methods, the idea is instead to use
an objective function representing how closely the approx-
imate value function satisfies the Bellman equation. The
true value function V satisfies the Bellman equation ex-
actly:

V = R + �PV
def= TV,

where R is the vector with components E{rt+1 | st = s}
and T is known as the Bellman operator. A seemingly nat-
ural measure of how closely the approximation V✓ satisfies
the Bellman equation is the mean-square Bellman error:

MSBE(✓) = k V✓ � TV✓ k2D . (3)

This is the objective function used by the most important
prior effort to develop gradient-descent algorithms, that by
Baird (1995, 1999). However, most temporal-difference al-
gorithms, including TD, LSTD, and GTD, do not converge
to the minimum of the MSBE. To understand this, note that
the Bellman operator follows the underlying state dynam-
ics of the Markov chain, irrespective of the structure of the
function approximator. As a result, TV✓ will typically not
be representable as V✓ for any ✓. Consider the projection
operator ⇧ which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

⇧v = V✓ where ✓ = arg min
✓
k V✓ � v k2D .

In a linear architecture, in which V✓ = �✓ (where � is the
matrix whose rows are the �s), the projection operator is
linear and independent of ✓:

⇧ = �(�>D�)�1�>D
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Objective functions for off-policy 
policy evaluation

But we don’t have access to the true value function :( 

Instead we could start with the Bellman equation 

V𝜃 = R + γPπ V𝜃 

Let T, the bellman operator, replace R + γPπ 

V𝜃 = R + γPπ V𝜃 

  V𝜃 = TV𝜃 

Which leads to the mean squared bellman error objective: 

This is what residual gradient algorithms optimize 

NOTE: D = diag(ds) and Pπ are about different policies π  ≠ μ

Fast gradient-descent methods for temporal-difference learning with linear function approximation

2. Linear value-function approximation
We consider a prototypical case of temporal-difference
learning, that of learning a linear approximation to the
state-value function for a given policy and Markov deci-
sion process (MDP) from sample transitions. We take both
the MDP and the policy to be stationary, so their combina-
tion determines the stochastic dynamics of a Markov chain.
The state of the chain at each time t is a random variable,
denoted st 2 {1, 2, ..., N}, and the state-transition proba-
bilities are given by a matrix P . On each transition from
st to st+1, there is also a reward, rt+1, whose distribution
depends on both states. We seek to learn the parameter
✓ 2 <n of an approximate value function V✓ : S ! < such
that

V✓(s) = ✓>�s ⇡ V (s) = E

( 1X

t=0

�trt+1 | s0 = s

)
, (1)

where �s 2 <n is a feature vector characterizing state s,
and � 2 [0, 1) is a constant called the discount rate.

In this paper we consider one-step temporal-difference
learning (corresponding to � = 0 in TD(�)), in which
there is one independent update to ✓ for each state tran-
sition and associated reward. There are several settings
corresponding to how the state transitions are generated.
In the on-policy setting, for example, the state transitions
come directly from the continuing evolution of the Markov
chain. We assume that the Markov chain is ergodic and
uni-chain, so there exists a limiting distribution d such that
ds = limt!1 P(st = s).1 In the on-policy case, d is linked
to the transition probabilities (in particular, we know that
P>d = d) and this linkage is critical to the convergence
of algorithms such as conventional TD. In this paper, we
consider a general setting (introduced in Sutton, Szepesvári
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over the state space according to how often each state oc-
curs. The MSE objective function is

MSE(✓) =
X

s

ds (V✓(s)� V (s))2

def= k V✓ � V k2D .

In the second equation, V✓ and V are viewed as vectors with
one element for each state, and the norm k v k2D = v>Dv
is weighted by the matrix D that has the ds on its diagonal.

In temporal-difference methods, the idea is instead to use
an objective function representing how closely the approx-
imate value function satisfies the Bellman equation. The
true value function V satisfies the Bellman equation ex-
actly:

V = R + �PV
def= TV,

where R is the vector with components E{rt+1 | st = s}
and T is known as the Bellman operator. A seemingly nat-
ural measure of how closely the approximation V✓ satisfies
the Bellman equation is the mean-square Bellman error:

MSBE(✓) = k V✓ � TV✓ k2D . (3)

This is the objective function used by the most important
prior effort to develop gradient-descent algorithms, that by
Baird (1995, 1999). However, most temporal-difference al-
gorithms, including TD, LSTD, and GTD, do not converge
to the minimum of the MSBE. To understand this, note that
the Bellman operator follows the underlying state dynam-
ics of the Markov chain, irrespective of the structure of the
function approximator. As a result, TV✓ will typically not
be representable as V✓ for any ✓. Consider the projection
operator ⇧ which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

⇧v = V✓ where ✓ = arg min
✓
k V✓ � v k2D .

In a linear architecture, in which V✓ = �✓ (where � is the
matrix whose rows are the �s), the projection operator is
linear and independent of ✓:

⇧ = �(�>D�)�1�>D
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2. Linear value-function approximation
We consider a prototypical case of temporal-difference
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state-value function for a given policy and Markov deci-
sion process (MDP) from sample transitions. We take both
the MDP and the policy to be stationary, so their combina-
tion determines the stochastic dynamics of a Markov chain.
The state of the chain at each time t is a random variable,
denoted st 2 {1, 2, ..., N}, and the state-transition proba-
bilities are given by a matrix P . On each transition from
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( 1X

t=0

�trt+1 | s0 = s

)
, (1)

where �s 2 <n is a feature vector characterizing state s,
and � 2 [0, 1) is a constant called the discount rate.

In this paper we consider one-step temporal-difference
learning (corresponding to � = 0 in TD(�)), in which
there is one independent update to ✓ for each state tran-
sition and associated reward. There are several settings
corresponding to how the state transitions are generated.
In the on-policy setting, for example, the state transitions
come directly from the continuing evolution of the Markov
chain. We assume that the Markov chain is ergodic and
uni-chain, so there exists a limiting distribution d such that
ds = limt!1 P(st = s).1 In the on-policy case, d is linked
to the transition probabilities (in particular, we know that
P>d = d) and this linkage is critical to the convergence
of algorithms such as conventional TD. In this paper, we
consider a general setting (introduced in Sutton, Szepesvári
& Maei 2009) in which the first state of each transition is
chosen i.i.d. according to an arbitrary distribution d that
may be unrelated to P (this corresponds to off-policy learn-
ing). This setting defines a probability over independent
triples of state, next state, and reward random variables,
denoted (sk, s0k, rk), with associated feature-vector random
variables �k = �sk and �0k = �s0

k
. From these we can de-

fine, for example, the temporal-difference error,

�k = rk + �✓>k �0k � ✓>k �k,

used in the conventional linear TD algorithm (Sutton
1988):

✓k+1  ✓k + ↵k�k�k, (2)

where ↵k is a sequence of positive step-size parameters.
1Our results apply also to the episodic case if ds is taken to be

the proportion of time steps in state s. In this case, the sum in (1)
is only over a finite number of time steps, the rows of P may sum
to less than 1, and � may be equal to 1 (as long as (�P )1 = 0).

3. Objective functions
An objective function is some function of the modifiable
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be the mean squared error (MSE) between the approximate
value function V✓ and the true value function V , averaged
over the state space according to how often each state oc-
curs. The MSE objective function is

MSE(✓) =
X

s

ds (V✓(s)� V (s))2

def= k V✓ � V k2D .
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an objective function representing how closely the approx-
imate value function satisfies the Bellman equation. The
true value function V satisfies the Bellman equation ex-
actly:
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def= TV,

where R is the vector with components E{rt+1 | st = s}
and T is known as the Bellman operator. A seemingly nat-
ural measure of how closely the approximation V✓ satisfies
the Bellman equation is the mean-square Bellman error:

MSBE(✓) = k V✓ � TV✓ k2D . (3)

This is the objective function used by the most important
prior effort to develop gradient-descent algorithms, that by
Baird (1995, 1999). However, most temporal-difference al-
gorithms, including TD, LSTD, and GTD, do not converge
to the minimum of the MSBE. To understand this, note that
the Bellman operator follows the underlying state dynam-
ics of the Markov chain, irrespective of the structure of the
function approximator. As a result, TV✓ will typically not
be representable as V✓ for any ✓. Consider the projection
operator ⇧ which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

⇧v = V✓ where ✓ = arg min
✓
k V✓ � v k2D .

In a linear architecture, in which V✓ = �✓ (where � is the
matrix whose rows are the �s), the projection operator is
linear and independent of ✓:
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Baird (1995, 1999). However, most temporal-difference al-
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operator ⇧ which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

⇧v = V✓ where ✓ = arg min
✓
k V✓ � v k2D .

In a linear architecture, in which V✓ = �✓ (where � is the
matrix whose rows are the �s), the projection operator is
linear and independent of ✓:

⇧ = �(�>D�)�1�>D



Projection is important
We cannot always solve the MSBE because it ignores the effect of 
function approximation 

For example,  

If ɸ = [1] for each state, and R is some vector of rewards 

then R + γPπ V𝜃 cannot be represented as ɸ𝜃 

that is there is no vector 𝜃 that can represent the value function when the features 
for each state = a bias unit 

the true V𝜃 is outside the class of value functions you can represent with ɸ 

We want to find a 𝜃 that takes into account that the range of 
functions we can learn is limited by ɸ

 we want our objective function to find the best 𝜃 in this restricted class of functions

Fast gradient-descent methods for temporal-difference learning with linear function approximation

2. Linear value-function approximation
We consider a prototypical case of temporal-difference
learning, that of learning a linear approximation to the
state-value function for a given policy and Markov deci-
sion process (MDP) from sample transitions. We take both
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learning (corresponding to � = 0 in TD(�)), in which
there is one independent update to ✓ for each state tran-
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corresponding to how the state transitions are generated.
In the on-policy setting, for example, the state transitions
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chain. We assume that the Markov chain is ergodic and
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3. Objective functions
An objective function is some function of the modifiable
parameter ✓ that we seek to minimize by updating ✓. In
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gradient or sample gradient of the objective function with
respect to ✓. The first question then, is what to use for the
objective function? For example, one natural choice might
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value function V✓ and the true value function V , averaged
over the state space according to how often each state oc-
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In the second equation, V✓ and V are viewed as vectors with
one element for each state, and the norm k v k2D = v>Dv
is weighted by the matrix D that has the ds on its diagonal.

In temporal-difference methods, the idea is instead to use
an objective function representing how closely the approx-
imate value function satisfies the Bellman equation. The
true value function V satisfies the Bellman equation ex-
actly:

V = R + �PV
def= TV,

where R is the vector with components E{rt+1 | st = s}
and T is known as the Bellman operator. A seemingly nat-
ural measure of how closely the approximation V✓ satisfies
the Bellman equation is the mean-square Bellman error:

MSBE(✓) = k V✓ � TV✓ k2D . (3)

This is the objective function used by the most important
prior effort to develop gradient-descent algorithms, that by
Baird (1995, 1999). However, most temporal-difference al-
gorithms, including TD, LSTD, and GTD, do not converge
to the minimum of the MSBE. To understand this, note that
the Bellman operator follows the underlying state dynam-
ics of the Markov chain, irrespective of the structure of the
function approximator. As a result, TV✓ will typically not
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operator ⇧ which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

⇧v = V✓ where ✓ = arg min
✓
k V✓ � v k2D .

In a linear architecture, in which V✓ = �✓ (where � is the
matrix whose rows are the �s), the projection operator is
linear and independent of ✓:

⇧ = �(�>D�)�1�>D



Mean squared projected bellman error

Like the MSBE, but takes the function class into account 

Define a projection operator which takes any value function 
and projects it to the nearest value function representable by 
our function approximation 

In the case of linear function approximation, the projection 
can be expressed in matrix form independent of 𝜃: 

Giving us the mean squared projected Bellman error 
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learning (corresponding to � = 0 in TD(�)), in which
there is one independent update to ✓ for each state tran-
sition and associated reward. There are several settings
corresponding to how the state transitions are generated.
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chain. We assume that the Markov chain is ergodic and
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the Bellman equation is the mean-square Bellman error:
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to the minimum of the MSBE. To understand this, note that
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Figure 1. Geometric relationships between the square roots of the
two Bellman-error objective functions.

All the algorithms mentioned above find or converge to a
fixpoint of the composed projection and Bellman operators,
that is to a value of ✓ such that

V✓ = ⇧TV✓. (4)

We call this value of ✓ the TD fixpoint. In the current work,
we take as our objective the deviation from this fixpoint.
That is, we use as our objective function the mean-square
projected Bellman error:

MSPBE(✓) = k V✓ �⇧TV✓ k2
D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically. Although many
previous works have highlighted the goal of achieving the
TD fixpoint (4), the present work seems to be the first to
focus on the MSPBE as an objective function to be mini-
mized (but see Antos, Szepesvári and Munos 2008, p. 100).
Further insight into the difference between the two Bellman
error objective functions can be gained by considering the
episodic example in Figure 2.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(✓) = E[��]> E[��] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:
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Figure 2. Backward-bootstrapping example. In the left and mid-
dle panels, episodes begin in state A then transition either to B or
to C with equal probability before proceeding to termination with
a reward of 1 or 0 (all other transitions have zero reward). The ver-
tical positions of the states represent their values according to the
TD-fixpoint solution (left panel) and according to the residual-
gradient (RG) solution (middle panel; Baird 1995, 1999). State
A, for example, has height midway between 0 and 1 in both so-
lutions, corresponding to its correct value of 1

2 (because episodes
starting in A end half the time with a total reward of 1 and half
the time with a total reward of 0, and � = 1). In the TD solution,
states B and C are given values of 1 and 0 respectively, whereas
in the RG solution they are given the values 3

4 and 1
4 . The 1,0

values are correct in that these states are always followed by these
rewards, but they result in large TD errors, of � = ± 1

2 , on transi-
tions out of A. The RG solution has smaller TD errors, of � = ± 1

4 ,
on all of its transitions, resulting in a smaller mean-square TD er-
ror per episode of 1

4

2 ⇥ 2 = 1
8 as compared to 1

2

2
= 1

4 for the
TD solution. That is, the RG solution splits the TD error over
two transitions to minimize squared TD error overall. The RG so-
lution is also sometimes described as backwards bootstrapping—
making the value of a state look like the value of the state that
preceded it as well as the state that followed it. It has long been
recognized that backwards bootstrapping is to be avoided (Sutton
1988; Dayan 1992) but the RG algorithm has remained of inter-
est because it is a gradient-descent method and thus guaranteed to
converge (whereas TD(�) converges only on-policy) and because
it has a “two sample version” that minimizes the MSBE rather
than the squared TD error. The key difference here is that, from A,
the squared TD error tends to be large but the expected TD error
(the Bellman error) tends to be zero (as long as the B and C val-
ues are distributed symmetrically around 1

2 ). The TD solution 1,0
is in fact the minimum MSBE solution on this problem, and this
has led to the widespread belief that the MSBE solves the prob-
lem of backwards bootstrapping. However, this is not the case in
general; once function approximation is introduced, the MSBE
and MSPBE solutions differ, and the 3

4 , 14 solution may reappear.
An example of this is shown in the right panel, where the previ-
ous state A is split into two states, A1 and A2, that share the same
feature representation; they look the same and must be given the
same approximate value. Trajectories start in one of the two A
states each with 50% probability, then proceed deterministically
either to B and 1, or to C and 0. From the observable data, this
example looks just like the previous, except now taking multiple
samples is no help because the system is deterministic, and they
will all be the same. Now the 3

4 , 14 solution minimizes not just the
squared TD error, but the MSBE as well; only the MSPBE crite-
rion puts the minimum at the 1, 0 solution. The MSBE objective
causes function approximation resources to be expended trying
to reduce the Bellman error associated with A1 and A2, whereas
the MSPBE objective takes into account that their approximated
values will ultimately be projected onto the same value function.



Mean squared projected bellman error

It turns out TD(0) converges to the minimum of the MSPBE 

the 𝜃 such that V𝜃  = 𝚷T V𝜃  

the so called TD-Fixed point solution 

LSTD also converges to this solution 

And the algorithm we describe next converge to this fixed 
point as well 

The objective is convex 

There is MSPBE variant for eligibility traces (more later…) 
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two Bellman-error objective functions.

All the algorithms mentioned above find or converge to a
fixpoint of the composed projection and Bellman operators,
that is to a value of ✓ such that

V✓ = ⇧TV✓. (4)

We call this value of ✓ the TD fixpoint. In the current work,
we take as our objective the deviation from this fixpoint.
That is, we use as our objective function the mean-square
projected Bellman error:

MSPBE(✓) = k V✓ �⇧TV✓ k2
D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically. Although many
previous works have highlighted the goal of achieving the
TD fixpoint (4), the present work seems to be the first to
focus on the MSPBE as an objective function to be mini-
mized (but see Antos, Szepesvári and Munos 2008, p. 100).
Further insight into the difference between the two Bellman
error objective functions can be gained by considering the
episodic example in Figure 2.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(✓) = E[��]> E[��] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:
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Figure 2. Backward-bootstrapping example. In the left and mid-
dle panels, episodes begin in state A then transition either to B or
to C with equal probability before proceeding to termination with
a reward of 1 or 0 (all other transitions have zero reward). The ver-
tical positions of the states represent their values according to the
TD-fixpoint solution (left panel) and according to the residual-
gradient (RG) solution (middle panel; Baird 1995, 1999). State
A, for example, has height midway between 0 and 1 in both so-
lutions, corresponding to its correct value of 1

2 (because episodes
starting in A end half the time with a total reward of 1 and half
the time with a total reward of 0, and � = 1). In the TD solution,
states B and C are given values of 1 and 0 respectively, whereas
in the RG solution they are given the values 3

4 and 1
4 . The 1,0

values are correct in that these states are always followed by these
rewards, but they result in large TD errors, of � = ± 1

2 , on transi-
tions out of A. The RG solution has smaller TD errors, of � = ± 1

4 ,
on all of its transitions, resulting in a smaller mean-square TD er-
ror per episode of 1

4

2 ⇥ 2 = 1
8 as compared to 1

2

2
= 1

4 for the
TD solution. That is, the RG solution splits the TD error over
two transitions to minimize squared TD error overall. The RG so-
lution is also sometimes described as backwards bootstrapping—
making the value of a state look like the value of the state that
preceded it as well as the state that followed it. It has long been
recognized that backwards bootstrapping is to be avoided (Sutton
1988; Dayan 1992) but the RG algorithm has remained of inter-
est because it is a gradient-descent method and thus guaranteed to
converge (whereas TD(�) converges only on-policy) and because
it has a “two sample version” that minimizes the MSBE rather
than the squared TD error. The key difference here is that, from A,
the squared TD error tends to be large but the expected TD error
(the Bellman error) tends to be zero (as long as the B and C val-
ues are distributed symmetrically around 1

2 ). The TD solution 1,0
is in fact the minimum MSBE solution on this problem, and this
has led to the widespread belief that the MSBE solves the prob-
lem of backwards bootstrapping. However, this is not the case in
general; once function approximation is introduced, the MSBE
and MSPBE solutions differ, and the 3

4 , 14 solution may reappear.
An example of this is shown in the right panel, where the previ-
ous state A is split into two states, A1 and A2, that share the same
feature representation; they look the same and must be given the
same approximate value. Trajectories start in one of the two A
states each with 50% probability, then proceed deterministically
either to B and 1, or to C and 0. From the observable data, this
example looks just like the previous, except now taking multiple
samples is no help because the system is deterministic, and they
will all be the same. Now the 3

4 , 14 solution minimizes not just the
squared TD error, but the MSBE as well; only the MSPBE crite-
rion puts the minimum at the 1, 0 solution. The MSBE objective
causes function approximation resources to be expended trying
to reduce the Bellman error associated with A1 and A2, whereas
the MSPBE objective takes into account that their approximated
values will ultimately be projected onto the same value function.



Gradient-descent learning 
recipe

Use calculus to analytically compute the gradient 
∇𝜃MSPBE(𝜃)  

Determine the ``sample” versions of the gradient so 
that you can sample on every time step and whose 
expected value equals the gradient  

Take small steps in proportional to the sample 
gradient:  

𝜃t+1 = 𝜃t - 𝛼∇𝜃MSPBE(𝜃)



Gradient of the MSPBEDerivation of the TDC algorithm
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The TDC algorithm

On each time step 

Update two parameter vectors: 

As before:

wt+1  wt + �(⇢t�t � �>
t wt)�t

⇢t
def
=

⇡(At|St)

µ(At|St)
�t = Rt+1 + �✓>t �t+1 � ✓>t �t

✓t+1  ✓t + ↵⇢t�t�t � ↵⇢t�(�
>
t wt)�t+1

linear TD(0)
correction 

term



The TDC algorithm

Second set of weights, w, start equal to zero 

Their job is to estimate the expected TD-error, if 
samples we generated under policy π 

We are correcting the main weight update by w’s 
estimate of the expected TD-error in state St+1: 

  

As the primary weights (𝜃) converge, w→0

wt+1  wt + �(⇢t�t � �>
t wt)�t

✓t+1  ✓t + ↵⇢t(�t�t � �(�>
t wt)�t+1)



The TDC algorithm
The learning-rate parameter on the w is usually different from 
𝛼 

In many problems especially on-policy ones, it works best to 
set β near zero 

thus we are basically doing off-policy linear TD(0) 

In other problems, like Baird’s, β is several times larger than 𝛼 

w learns faster than 𝜃 

essential for divergence 

This is a called a two time-scale algorithm; makes 
convergence analysis challenging   

wt+1  wt + �(⇢t�t � �>
t wt)�t



TDC convergence

Assume … 

step-size parameters are decayed in a particular way 

𝛂 goes to zero faster than β goes to zero 

various matrices are non-singular 

AND the data is i.i.d; each ( ɸ(St), Rt+1,ɸ(St+1) ) is sampled i.i.d 

Then 

the parameter vector 𝜃 converges with probability 
one to the TD fixpoint



Performance on Baird’s

Results, analysis, and conclusions

The results of our experiment show that GTD(0) with ↵
h

= 0 diverged, GTD(0) with

learned h did not diverge, and GTD(0) with h

? performed best over 5000 steps on Baird’s

counterexample. The best performance of the variant of GTD(0) with learned h was

achieved with ↵ = 0.0125 and ↵
h

= 3.37500 ⇤ ↵. The best performance of GTD(0)

with h = h

? was achieved with ↵ = 0.025.
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Figure 7.6: The learning curves for three variants of GTD on Baird’s counterexample. Plot-
ted is the RMSPBE verses time-step with a log-scale on the x-axis. Each variant uses the
best parameter’s found over a large systematic sweep.

Consider the updates of the GTD(0) algorithm in Baird’s counterexample. Recall that

the GTD(0) algorithm updates the primary weights, w
t+1, corresponding to the next state’s

feature vector by a correction term:

w

t+1 = w

t

+ ↵⇢
t

[�
t

x

t

� �
t+1(x

>
t

h

t

)x

t+1],

since � = 0. In Baird’s counterexample, the correction helps by depressing the value

of w(8). The GTD(0) algorithm’s estimate of �
t

⇡ x

>
t

h

t

will become large after several

transitions into state seven. Once x

>
t

h

t

becomes large, w(8) will be decreased proportional

to (�↵
t

(x

>
t

h

t

)x

t+1) on each transition into state seven. In this problem, the correction

helps prevent divergence and helps GTD(0) find a close approximation to the correct weight

vector, as supported by the results in Figure 7.6.

From these results in Figure 7.6 we conclude that the secondary weights of GTD(0) are
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TD(0)

TDC



Markov chain (on-policy)
Random walk problem (on-policy)

A B C D E
100000

start

3 different feature representations. 
• 5 tabular features
• 5 inverted-tabular features
• 3 features (genuine FA)



Markov chain Results        
(on-policy)

Summary of empirical results
on small problems

TD, TDC  >  GTD-2  >  GTD
Sometimes  TD > TDC
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MSPBE + eligibility traces

We need to define a new version of the MSPBE 

So that when we take the gradient of this objective we 
end up with a TD-stlye algorithm that uses eligibility 
traces 

This new objective can be written in terms of 
expectations over observed data—rewards, and 
feature vectors that we see over time

MSPBE(✓)
def
= ||�✓ �⇧T⇡,��✓||2D

MSPBE(✓) = E[�tet | µ] E[�t�
>
t | µ] E[�tet | µ]



MSPBE + eligibility traces

Again we take the gradient  

Use a secondary weight vector to take care of one 
part of the gradient 

Then stochastically sample the gradient 

We arrive at an eligibility trace enabled TDC 
algorithm, that we will now call 

GTD(λ)

MSPBE(✓) = E[�tet | µ] E[�t�
>
t | µ] E[�tet | µ]



GTD(λ)

et  ⇢t(��et�1 + �t)

✓t+1  ✓t + ↵
�
�tet � �(1� �)(e>t wt)�t+1

�

wt+1  wt + �
�
�tet � (�>

t wt)�t

�



GTD(λ)

If λ = 0, then GTD(λ) becomes TDC 

If λ = 1, then the correction term disappears 

then we have linear, off-policy Monte Carlo policy evaluation 

Accumulating trace  

This algorithm also converges 

but we have a requirement that the traces stay bounded

✓t+1  ✓t + ↵
�
�tet � �(1� �)(e>t wt)�t+1

�



Experiments with GTD(λ)

insights into how the performance of the GTD(�) algorithm relates to variations in its pa-

rameter values.

All the experiments of this chapter focus on state GVF estimation and linear function

approximation. We begin with experiments in a Markov chain problem and then move to

Baird’s counterexample.

7.1 Experiments on Markov chains

We begin our experimental exploration of GTD(�) and its secondary weight vector on the

Markov chain problem, previously used in other empirical explorations of gradient-TD

learning methods (e.g., Sutton et al., 2009; Maei, 2011; Hackman, 2012).

7.1.1 Problem

We use a Markov chain task, depicted in Figure 7.1, to perform experiments to better un-

derstand secondary weights of the GTD(�) algorithm. The chain has two actions, left and

right, and two terminal states at the ends of the chain, with the left termination producing

a cumulant of -1 and the right termination producing a cumulant of +1. Cumulant values

on all other transitions are zero. Upon entry into one of the termination states, the agent is

teleported to the middle state in the chain.

0 1 2 3 4 5 6
+1-1

1
0
0

1/√2
1/√2
0

1/√3
1/√3
1/√3

0
1/√2
1/√2

0
0
1

0
0
0

0
0
0

Figure 7.1: The Markov chain domain with discrete states and actions. The nonzero cumu-
lants are labelled in red, and the feature vector corresponding to each state is given below
each state.

The learning problem is specified by the three question functions. The target policy

selects the right action with probability p, and the left action with probability 1 � p. The

cumulants are given by the definition of the problem, and �
t

becomes zero upon entry into

either terminal state and is 1.0 otherwise.

The answer functions are: � is a constant function equal to 0.9, and the behavior policy,

97

uses an LMS rule to learn h based in part on the TD errors produced by the update to the

primary weight vector w

t

. On the other hand, Maei’s (2011) experiments with GTD(0) on

Baird’s counterexample used a value of ↵
h

much larger than ↵, but those experiments did

not investigate or report if h approximated h

? well.

Based on prior evidence, we hypothesize that the GTD(�) algorithm’s best performance

will be achieved with small values of ↵
h

relative to ↵, and thus the secondary weights will

not match what the theory tells us h should be.

Experiment

The task of our first experiment was to find the values of ↵ and ↵
h

that produce the the

lowest MSPBE over the last 50 episodes of a 200 episode experiment on five instances of

the chain problem. We tested 72 instances of GTD, each with a different combination of

↵ and ↵
h

: all combinations of ↵ 2 {0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32}

and ↵
h

2 {10

�5, 10

�4, 10

�3, 10

�2, 10

�1, 0.25, 0.5, 0.75, 1.0}. The five problem instances

included two on-policy instances and three off-policy instances. Each algorithm instance

was initialized with w =

~
0 and h =

~
0, and then run for 200 episodes. Then the whole

thing was repeated for 100 runs. The random seed was initialized to the same value for all

algorithm instances at the beginning of each group of 100 runs. We used the MSPBE as a

measure of performance like many previous studies of gradient-TD methods (e.g., Sutton

et al., 2009; Maei, 2011; Hackman, 2012). For each run, the root MSPBE or RMSPBE

was recorded at the end of each episode and averaged over runs. At the beginning of each

run, the weight vectors of the GTD(�) were both set to zero. We selected the ↵ and ↵
h

that

achieved the best total RMSPBE over the last 50 episodes.

The values of ↵ and ↵
h

that achieved the best total RMSPBE over the last 50 episodes

are given in Table 7.1. Small values of ↵
h

yielded the best RMSPBE, but the smallest

available value, ↵
h

= 0.00001, did not produce the lowest average RMSPBE in an chain

instance.

chain p
µ

= 0.5 p
µ

= 0.5 p
µ

= 0.5 p
µ

= 0.6 p
µ

= 0.95

instance p
⇡

= 0.5 p
⇡

= 0.25 p
⇡

= 0.75 p
⇡

= 0.4 p
⇡

= 0.95

↵ 0.01 0.01 0.01 0.01 0.08
↵
h

0.01 0.1 0.0001 0.01 0.01

Table 7.1: The values for ↵ and ↵
h

found to minimize RMSPBE on average, in each in-
stance of the chain problem. Each instance is defined by the combination of target policy
and behavior policy. The probability of taking the right action for the target policy is de-
noted by p

⇡

, and likewise for the behavior: p
µ

. See text for a description of the experiment.
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Off-policy, policy evaluation with FA

linear TD(0≤λ<1) can diverge 

off-policy Monte Carlo, linear TD(1) converge  

can exhibit large variance 

Residual gradient method converges 

can learn incorrect predictions with function approximation 

backward bootstrapping problem 

TDC converges 

requires an extra set of weights and another step-size parameter



GTD(λ) with FA

GTD(λ) converges 

when λ = 1, does not correspond to any off-policy Monte Carlo 
algorithm 

needs two sets of weights, two learning rate parameters 

can behave very poorly on some off-policy problems



GTD(λ) on Baird’s 
counterexample

7.2.1 Problem

We use a variant of Baird’s counterexample (Baird, 1995) described by Maei (2011) and

shown in Figure 7.5. We will refer to this problem slightly inaccurately as Baird’s coun-

terexample. This MDP contains seven discrete states and no terminal states; it is a contin-

uing problem. There are two actions available in each state: action one (solid arrow) and

action two (dashed arrow). Action one moves the demon to state seven from every state,

including from state seven. The second action, in states one to six, moves the demon to a

new state from one to six randomly with equal probability, but never to state seven. The

second action, in state seven, moves the demon to any state from one to six, randomly with

equal probability, but never to state seven.
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Figure 7.5: A variation of Baird’s counterexample due to Maei (2011).

The learning problem is specified by the question functions. The target policy selects

action one deterministically in every state. The cumulants are zero on every transition, and

�
t

is constant and equal to 0.99. This setting of the question functions specifies a single

GVF to learn.

The answer functions for this task are straightforward. The behavior policy selects

action one with probability 1/7, and action two with probability 6/7, in every state. The

feature vectors for each state are given in Figure 7.5. The � value is a constant function

equal to 0.0. The learning task specified by these question functions has a solution of

v(s; ⇡, �, z) = 0 for all states, with w =

~
0 and w = [�2, 1, 1, 1, 1, 1, 1, 4]c where c 2 R:

an infinite number of solutions.
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useful for avoiding divergence in Baird’s counterexample, and that learning is faster if the

theoretically optimal secondary weights (h?) are used, compared to learning the secondary

weights in the usual way.

The results of the parameter sweep showed that the average RMSPBE achieved by

GTD(�) in this domain were worse for the two values of � larger than zero. Also, the range

of ↵ and ⌘ values that did not cause divergence appeared to become smaller for the larger �

settings. The individual learning curves of GTD(� = 0.9), for various parameter settings,

exhibited highly erratic performance (not shown), and all parameter combinations caused

divergence, even for ↵ as small as .1 ⇤ 2

�20.
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Figure 7.7: The average RMSPBE of GTD(�) on Baird’s counterexample, for three dif-
ferent values of �. Each heat-map shows the mean RMSPBE (color) over 5000 steps for
different combinations of ↵ and ⌘. White corresponds to massive errors, dark red (near
black) regions correspond to low RMSPBE, and lighter colors indicate large RMSPBE.

One explanation for the performance of the GTD(�) algorithm on Baird’s counterex-

ample might be large weight updates, caused by large likelihood ratios multiplying in the

trace update. In this problem, the traces are frequently cleared by the off-policy transitions.

However, in the unlikely event that several self transitions are made in state seven, the trace

updates of the GTD(�) algorithm can grow large quickly. To see this, consider successive

state seven! state seven transitions and � = 0.9, assuming e

t�1 = x

t�1 because ⇢
t�1 = 0:

e
t

=⇢
t

(��e

t�1 + x

t

) = 7(0.99 ⇤ .9x
t�1 + x

t

) = 6.236x

t�1 + 7x

t

e
t+1 =⇢

t+1(��e

t

+ x

t+1) = 7(0.99 ⇤ .9(6.236x

t�1 + 7x

t

) + x

t+1)

= 41.31x

t�1 + 43.659x

t

+ 7x

t+1

e
t+2 =⇢

t+2(��e

t+1 + x

t+2) = 7(0.99 ⇤ 0.9(41.31x

t�1 + 43.659x

t

+ 7x

t+1) + x

t+2)

= 357.65x

t�1 + 272.30x

t

+ 43.659x

t+1 + 7x

t+2.

The effect of such sequences, though rare, is a large update which causes instability in the
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More algorithm improvements possible

Problem: GTD(λ = 1), does not correspond to any off-
policy Monte Carlo algorithm 

Solution: Provisional TD 

new derivation technique to fix this technical problem 

simple algorithm 

when on-policy (𝞀=1) exactly performs regular TD updates (not 
true for GTD(λ) unless β=0) 

converges in the tabular case 

works well in practice  
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Problem: GTD(λ = 1), does not correspond to any off-
policy Monte Carlo algorithm 

Solution: Provisional TD 

new derivation technique to fix this technical problem 

simple algorithm 

when on-policy (𝞀=1) exactly performs regular TD updates (not 
true for GTD(λ) unless β=0) 

converges in the tabular case 

works well in practice  



More algorithm improvements possible

Problem: GTD(λ = 1), uses accumulating traces 
which can perform poorly 

Solution: True online GTD 

new derivation technique to use Dutch Traces—like True-online 
TD 

Complex algorithm 

Three eligibility traces 

converges 

works well in practice, 2-3 times slower than GTD(λ)



More algorithm improvements possible

Problem: GTD(λ = 1), requires two sets of weight 
vectors 

Solution: Emphatic TD 

new derivation technique 

Simple algorithm, one set of weights, one learning rate 

Strong convergence results 

works well in practice 

can be extended to use Dutch traces: true-online ETD



More algorithm improvements possible

Other approaches we won’t discuss: 

mirror-proc gradient TD methods 

hybrid temporal difference learning 

off-policy actor critic methods



There is still algorithm research to be 
done on this basic, fundamental problem
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Figure 2: On-policy performance on random MDPs with two di↵erent representations and o↵-policy performance on Baird’s
counterexample. All plots report mean absolute value error averaged over 100 runs and 30 random MDPs, and 500 runs for
Baird’s. The plots are organized in columns left to right corresponding to results on random MDPs with tabular and binary
features, and results on Baird’s counterexample. The plots are also organized in rows from top to bottom corresponding to
learning curves, ↵, ⌘, and � sensitivity.
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Figure 2: On-policy performance on random MDPs with two di↵erent representations and o↵-policy performance on Baird’s
counterexample. All plots report mean absolute value error averaged over 100 runs and 30 random MDPs, and 500 runs for
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GQ(λ)
Learns state-action value functions, Q instead of V

P⇡
µ operator is defined in Equation (7.4), G�

t (�) is

G�
t (�) = Rt+1

+ ⇤
⇣
(1� ⌦)�>✏t+1

+ ⌦G�
t+1

(�)
⌘
, (8.4)

and ✏t ⌥ ✏(St, At).

First, in the next section we introduce the GQ(⌦) algorithm, a gradient TD method, whose
learning parameter is updated according stochastic gradient descent in the objective func-
tion J(�). Later, in this chapter, we show the derivation of algorithm..

8.2 The GQ(�) algorithm

First, we specify the GQ(⌦) algorithm as follows: The weight vector � ✓ Rd is initialized
arbitrarily. The secondary weight vector w ✓ Rd is initialized to zero. An auxiliary memory
vector known as the eligibility trace e ✓ Rd is also initialized to zero. Their update rules
are

�t+1

= �t + �t

⇣
⌅tet � ⇤(1� ⌦)(w>t et)✏̄t+1

⌘
, (8.5a)

wt+1

= wt + ⇥t

⇣
⌅tet � (w>t ✏t)✏t

⌘
, (8.5b)

and
et = ✏t + ⇤⌦�tet�1

, (8.6)

where,
⌅t = Rt+1

+ ⇤�>t ✏̄t+1

� �>t ✏t, (8.7)

✏̄t =
✏

a

�(a | St)✏(St, a), (8.8)

�t =
�(At | St)
�b(At | St)

,

where ✏t is an alternate notation for ✏(St, At), and �t > 0, ⇥t > 0, are positive step-size
parameters for � and w weights respectively.

In the next section we derive GQ(⌦) based on gradient-descent in projected (⌦-weighted)
Bellman error objective function.
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greedy-GQ(λ)
Do policy iteration with the state-action value 
function learned by GQ(λ) 

Behavior policy—μ—is some exploratory policy 

Target policy—π—is greedy with respect to learned 
Qt(s,a) 

Off-policy in the same way that Q-learning is off-
policy 

BUT, traces are not cutoff completely when μ selects 
an action that is not greedy with respect to Q



greedy-GQ(λ) on a robot
Behavior policy—μ—uniform random amongst 27 
actions  

corresponding to constant motor velocities for .5 seconds 

Reward = from light sensor reading, γ = 0.9   

Target policy—π—is greedy with respect to learned 
Qt(s,a) 

Can the robot learn a policy to goto the brightest source 
of light, from data generated by a random policy?



greedy-GQ(λ) on a robot
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Figure 6.8: Learning light-seeking behavior from random behavior. Shown are superim-
posed images of robot positions: Left) In testing, the robot under control of the target
policy turns and drives straight to the light source at the bottom of the image; Middle) Un-
der control of the random behavior policy for the same amount of time, the robot instead
wanders all over the pen; Right) Light sensor outputs averaged over seven such pairs of
runs, showing much higher values for the learned target policy.

6.4 Other demonstrations of GVF learning

The experiments described in this Chapter and our paper (Sutton et al., 2011) were the first

empirical demonstrations of GVF learning, but they also inspired several other empirical

studies on GVF learning. This section summarizes these other works, adding further sup-

porting evidence of the usefulness of GVFs as a language for predictive knowledge and the

evidence of the practicality of learning GVFs with reinforcement learning methods.

On-policy GVF learning has been explored in other robot domains, demonstrating con-

crete benefits of predicting what will happen next. In the domain of adaptive prosthetics,

GVFs have been used to represent predictions about a multi degree-of-freedom robotic arm

(Pilarski et al., 2012). Each prediction was represented as a constant termination GVF and

learned on-policy and in parallel with the TD(�) algorithm and tile coding function approx-

imation. After learning, the predictions were then used to adapt the switching order of the

robot arm to significantly improve upon task completion efficiency. Later work showed that

these nexting predictions can be learned online while a human amputee generated the be-

havior data, significantly improving the amputee’s user experience (Edwards et al., 2014).

This adaptive prosthetics work is important because it provides another demonstration of

our basic learning scheme—linear temporal difference learning and large binary feature

representations—working on a very different robot platform. Their work also goes beyond

the experiments of this chapter, demonstrating a concrete application of GVF learning: im-

proving the performance of switching time. Our experiments (in this chapter and Sutton et

93



More greedy-GQ(λ) on a 
robot

Figure 4. Illustration of policies learned by four control demons in the spinning experiment. The first panel
shows the standard starting position, and the other four panels show the motions from that position produced when control
was given to one of the eight learned demon policies each tasked to maximize a di↵erent sensor. By maximized sensor: IR9)
Robot quickly rotates clockwise and stops in the position that maximizes the IR proximity sensor on the side of the robot’s
tail; IRO) Robot quickly rotates counterclockwise, overshoots a bit, then settles in a position that maximizes the proximity
sensor between the robot’s ‘eyes’; MAGX) Robot rotates clockwise and stops at a position that maximizes the magnetic x-axis
sensor; VEL) Robot spins continuously, maximizing the wheel velocity sensor.

5.2 Off-policy learning of multiple
spinning control policies

Our third experiment examined whether control demons
can learn policies in parallel while following a random be-
havior policy, in other words, whether the demons can learn
o↵-policy, a crucial ability for the scalability of the architec-
ture. The action set in this experiment was {rotate-right,
rotate-left, stop}. The behavior policy was to randomly
select one of the three actions, with a bias (50% probability)
toward repeating the action taken on the previous time step.
The result of this behavior policy was that the robot would
spin in place in both directions with a variety of speeds and
durations over time. The state space was represented with
four overlapping joint tilings across three sensors: the mag-
netometer, one of the IR sensors, and the velocity of one
of the wheels. Each sensor was divided into eight regions
for the tilings, resulting in a total of 3 ⇥ 4 ⇥ 83 = 6144
binary features. One additional feature was provided as a
bias unit (always =1), and three additional binary features
were used to encode the previous action. The time step cor-
responded to approximately 100ms. The other parameters
were ↵✓ = 0.1, ↵w = 0.001, and �(s) = 0.4, 8s 2 S. Learn-
ing was done online, but the data was also saved so that the
whole learning process could be repeated without using the
robot if desired (this is one of the advantages of an o↵-policy
learning ability).

In this experiment we ran eight control demons in par-
allel for 100,000 time steps of o↵-policy learning with ac-
tions selected according to the behavior policy. Each demon
was tasked with learning how to maximize a di↵erent sensor
value. That is, their question functions were ⇡ = greedy(q̂)
and, for all s 2 S, �(s) = 0.98, z(s) = 0, and r(s) = the
value of one of eight sensors approximately normalized to a
0 to 1 range. The eight sensors used as rewards were four
of the IR proximity sensors, the magnetometer, the veloc-
ity sensor for one of the wheels, one of the thermal sensors,
and an IR beacon sensor for the charging station. To ob-
jectively measure the quality of the policies learned by the
eight demons, we occasionally interrupted learning to eval-
uate them on-policy. That is, with learning turned o↵, the
robot followed one of the eight learned demon policies for
250 time steps and we measured the demon’s return. We

0  10 50 100

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 R
ew

ar
d 

pe
r T

im
e 

St
ep

Time Steps (thousands)

Vel

MagX

IR0

IR2

IR7
IR9

Beacon

Temp

 

 

Figure 5. Learning curves for eight control demons learn-
ing o↵-policy in the spinning experiment. From extensive
experience spinning, eight control demons learned di↵erent poli-
cies each maximizing a di↵erent sensor. The graph shows the
performance of the policies, gathered in special on-policy evalu-
ation sessions during which learning was turned o↵. All demons
learned to perform near optimally. Rewards were scaled to the
range [0, 1], but because the beacon light flashes on and o↵, its
maximal average was 0.5.

repeated this for each demon ten times from each of three
initial starting positions (angles) to produce 30 measures of
the e↵ectiveness of each demon’s policy at that point in the
training. These numbers were averaged together to produce
the learning curves shown in Figure 5.

Examples of the final learned behavior from four of the
demons are shown in Figure 4. These photos show typical
behavior, which in the case of all eight demons appeared to
successfully maximize the targeted sensor. In separate runs
we found that it would take approximately 25,000 steps each
to learn similarly competent control policies for a single de-
mon while behaving according to its policy as it was learned
(on-policy training). In only four times longer, we learned
eight demons in parallel, and could potentially have learned
thousands or millions more using o↵-policy learning.
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