FA16: MACHINE LEARNING: 13974

Wiki

CS B555: Machine Learning

Class schedule

This schedule is tentative and will almost definitely change throughout the semester.

Readings are from the notes:  Download notes.pdf

These notes may change to fix any issues or typos; look at the date on the first page to see how recently they have been updated. I recommend avoiding printing anything beyond the chapter you are currently reading, as some sections may change. This is particularly true for Chapter 6-8 and the appendix. 

A (very rough and still in-progress) reference for math notation:  Download notation.pdf

 

Week Date Lecture Readings and Deadlines
1 Aug 22 Introduction:  Download Lec1-Introduction.pdf

Assignment #1 released

Thought questions #1:

-read Chapters 1, 2 and 3 from the  Download notes.pdf

Aug 24 Probability: Lec2-Probability.pdf Download Lec2-Probability.pdf
2 Aug 29

Probability: Lec2-Probability-2.pdf Download Lec2-Probability-2.pdf

Starting Parameter Estimation: Lec4-ParameterEstimation.pdf Download Lec4-ParameterEstimation.pdf

Office hours for AIs:

2:30 - 4:00 p.m. Tuesday

1:00 - 2:30 p.m. Wednesday

Office hours for Martha:

3:00 - 5:00 p.m. Tuesday

Aug 31 Parameter Estimation: Lec4-ParameterEstimation_2.pdf Download Lec4-ParameterEstimation_2.pdf
3 Sep 5

No classes: Labour day

Office hours moved to Wednesday

Sep 7

Intro to prediction problems: Lec5-IntroML.pdf Download Lec5-IntroML.pdf

Thought questions #1 due
4 Sep 12 Linear regression: Lec7-LinearRegression.pdf Download Lec7-LinearRegression.pdf
Sep 14

Linear regression:Lec7-PracticalLinearRegression.pdf Download Lec7-PracticalLinearRegression.pdf

Matlab demo: example11.m Download example11.m

Assignment #1 due

Assignment #2 released

5 Sep 19

Regularization: Lec8-Regularization.pdf Download Lec8-Regularization.pdf

Sep 21 Optimization:  Download Lec9-StochasticOptimization.pdf
6 Sep 26 Generalized Linear Models:  Download Lec10-GLMs.pdf
Sep 28

Generalized Linear Models and logistic regression:  Download Lec11-LogisticRegression.pdf

Matlab demo: logistic regression and linear regression, logistic.zip Download logistic.zip

Thought questions #2 due
7 Oct 3 Naive Bayes:  Download Lec12-NaiveBayes.pdf
Oct 5

Multiclass classification:  Download Lec13-Multiclass.pdf

In-class questions:  Download feedback.pdf

 

8 Oct 10

Multiclass Classification:  Download Lec14-Multiclass2.pdf

Oct 12

Multiclass Classification (cont):  Download Lec14-Multiclass2.pdf

Assignment #2 due

Assignment #3 released

9 Oct 17 SVMs:  Download Lec15-SVMs.pdf
Oct 19 Review:  Download Lec16-Review.pdf Thought questions #3 due
10 Oct 24 Fixed representations for learning nonlinear functions:  Download Lec17-Representations.pdf
Oct 26 Fixed representations (continued...):  Download Lec18-Representations2.pdf
11 Oct 31 Neural networks:  Download Lec19-NeuralNetworks.pdf
Nov 2 Neural networks (cont...):  Download Lec20-NeuralNetworks2.pdf Quiz #1: Chapters 1-4
12 Nov 7 Factorization and unsupervised learning:  Download Lec21-Factorization.pdf
Nov 9

Semi-supervised learning, missing data and hidden variable models:  Download Lec22-MissingVariables.pdf

 

13 Nov 14

Hidden variable models and Bayesian regression:  Download Lec23-HiddenVariables.pdf

EM demo: em.zip Download em.zip

Nov 16 Boosting and ensembles:  Download Lec24-Ensembles.pdf

Assignment #3 due

Assignment #4 released

14 Nov 21 No classes: Thanksgiving
Nov 23 No classes: Thanksgiving

 

15 Nov 28

Performance measures and evaluation:  Download Lec27-EvaluationAndErrorFunctions.pdf

Office hours for Martha: 5:30 p.m. - 7:00 p.m. on Monday

Nov 30 Guest lecture: Prof. Donald Williamson Quiz #2: Chapters 5-7
16 Dec 5

No class

No office hours for Martha, but office hours for AIs remain the same

Dec 7

No class 

Assignment #4 due

17 Dec 14

Additional review class from 4:00 p.m. to 5:15 p.m. in Info East 150

Dec 16

Final exam: 5:00 p.m. - 7:00 p.m., JHA 100