SP17: PRINCIPLES OF MACHINE LEARNING: 30643

Wiki

CS B455: Principles of Machine Learning

Class schedule

This schedule is tentative and will almost definitely change throughout the semester.

Readings are from the notes:  Download notes.pdf

These notes may change to fix any issues or typos; look at the date on the first page to see how recently they have been updated. I recommend avoiding printing anything beyond the chapter you are currently reading, as some sections may change. This is particularly true for Chapter 6-8 and the appendix. 

 

Week Date Lecture Readings and Deadlines
1 Jan 09 Introduction:  Download Lec1-Introduction.pdf

Assignment #1 released

Thought questions #1:

-read Chapters 1, 2 and 3 from the  Download notes.pdf

Jan 11 Probability:  Download Lec2-Probability.pdf
2 Jan 16 No classes: MLK Jr. day

 

Jan 18 Probability (cont.): Download Lec2-Probability.pdf
3 Jan 23

Parameter Estimation:  Download Lec4-ParameterEstimation.pdf

Jan 25

Parameter Estimation:  Download Lec4-ParameterEstimation.pdf

Thought questions #1 due
4 Jan 30

Optimization background: Download Lec5-Optimization.pdf

Intro to prediction problems:  Download Lec6-IntroML.pdf

Feb 01

Finish of intro to prediction problems and costs

Introduce linear regression

Matlab demo: example11.m Download example11.m

Assignment #1 due

Assignment #2 released

5 Feb 06

Linear regression (Predrag Radivojac), OLS, algebraic insights

Feb 08 Linear regression (Predrag Radivojac), with maximum likelihood formulation
6 Feb 13 Linear regression and regularization:  Download Lec8-PracticalLinearRegression.pdf
Feb 15

Regularization and optimization:  Download Lec10-RegularizationAndOptimization.pdf

Thought questions #2 due
7 Feb 20

Finish optimization:  Download Lec10-RegularizationAndOptimization.pdf

Start logistic regression

Matlab demo: logistic regression and linear regression, logistic.zip Download logistic.zip

Feb 22

Naive Bayes:  Download Lec13-NaiveBayes.pdf

 

8 Feb 27

Naive Bayes (cont):  Download Lec13-NaiveBayes.pdf

In-class questions

Mar 01

Naive Bayes and some review:  Download Lec13-NaiveBayes.pdf

Start SVMs Download Lec16-SVMs.pdf

Assignment #2 due

Assignment #3 released

9 Mar 06 SVMs:   Download Lec16-SVMs.pdf
Mar 08 Review:  Download Lec17-Review.pdf Thought questions #3 due
10 Mar 13 No class: Spring break
Mar 15 No class: Spring break
11 Mar 20 Representations for learning nonlinear functions:  Download Lec18-Representations.pdf Quiz #1: Chapters 1-4
Mar 22 Fixed representations (continued...)  Download Lec18-Representations.pdf
12 Mar 27 Neural networks  Download Lec18-Representations.pdf
Mar 29

Neural networks: 

Download Lec18-Representations.pdf

Begin Evaluating algorithms:  Download Lec22-MeasuringPerformance.pdf

Assignment #3 due

Assignment #4 released

13 Apr 3

Evaluating algorithms:  Download Lec22-MeasuringPerformance.pdf

Apr 5

Hidden variables:  Download Lec24-HiddenVariables.pdf

 

14 Apr 10 Factorization and hidden variables:  Download Lec25-Factorization.pdf
Apr 12 Boosting and ensembles:  Download Lec26-Ensembles.pdf

 

15 Apr 17

Review class:  Download Lec28-Review.pdf

Apr 19 Advice for practical application and assignment 4:  Download Lec29-PracticalApplication.pdf

Quiz #2: Chapters 5-7
16 Apr 24

More about representations

Apr 26

Review class

Assignment #4 due

17 May 01

Final exam: 10:15 a.m. - 12:15 p.m. in PV 274 (regular classroom)